Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Пространство, время и движение. Величайшие идеи Вселенной - Кэрролл Шон - Страница 43
(8.12)
Будь жидкость неидеальной, а система отсчета подвижной, мы бы намучились с этим тензором. Из-за напряжений ненулевые внедиагональные элементы перестали бы быть нулевыми, да и диагональ усложнилась бы, так как давление в разные стороны может быть разным. Но мы и без этого хорошо напрягаем себе мозги. Поэтому остановимся на простой и понятной формуле (8.12), в которой плотность энергии значится в левом верхнем углу, а давление (одинаковое во всех направлениях) — на диагонали. Как ρ, так и p могут зависеть от xµ, так что у нас достаточно данных. А с помощью идеальной жидкости можно описать планеты, звезды и даже темную материю, заполняющую пространство.
(window.adrunTag = window.adrunTag || []).push({v: 1, el: 'adrun-4-144', c: 4, b: 144})Уравнение Эйнштейна
Чтобы обобщить гравитацию Ньютона с точки зрения теории относительности, нам нужно придумать уравнение, которое свяжет метрику пространства-времени с тензором энергии-импульса. Мы должны сделать новый шаг в деле унификации, о которой мы говорили, связывая энергию частицы с ее импульсом. В общей теории относительности гравитация создается не только массой, но и различными формами энергии, давлением, напряжением и другими величинами.
Так как же нам быть? И gµν, и Tµν — тензоры с двумя нижними индексами, да еще и симметричные (gµν = gνµ и Tµν = Tνµ). Поэтому в качестве первой догадки представим себе, что они пропорциональны друг другу:
gµν = αTµν. (8.13)
Здесь α — некий коэффициент пропорциональности. В любых выражениях с тензорами с обеих сторон должны быть одинаковые свободные индексы, иначе мы не сможем говорить о равенстве.
На самом деле эта идея довольно глупая. Но мы хотим посмотреть на то, как работает физик-теоретик. В его голове постоянно крутятся мысли: глупые тоже приходят, но не задерживаются надолго. Мы можем сразу сказать, что наше предположение не может быть верным, поскольку в пустом пространстве Tµν = 0 (так сокращенно записываются тензоры, все элементы которых равны 0), но метрика gµν не может быть нулевой. В пустом пространстве, а точнее при отсутствии гравитации, мы должны получить метрику Минковского.
Давайте подумаем. Выражение (8.13) законно с математической точки зрения, так как оно уравнивает два симметричных двухиндексных тензора. Однако оно не имеет физического смысла, ведь из него следует, что тензор энергии-импульса каким-то образом создает метрику, то есть пространство-время, а мы хотим, чтобы он его искривлял. В отсутствие источников гравитации (Tµν = 0) пространство-время может быть плоским, но стоит в нем появиться планете или звезде, оно должно искривиться[25].
Когда производная функции отлична от нуля, ее график искривляется. Следовательно, тензор энергии-импульса должен влиять не на саму метрику, а на ее производные. В главе 4 мы обсуждали гравитационные поля, которые Лаплас использовал для осмысления механики Ньютона. В этом контексте сила тяготения зависит не от потенциала поля, но от его производной. Поэтому в новом, релятивистском контексте следует считать метрический тензор грубым аналогом гравитационного потенциала: силы должны определяться не самим тензором, а его производными.
Таким образом, мы ищем величину, которая представляет собой симметричный тензор с двумя нижними индексами (так что мы можем считать его пропорциональным Tµν), который мы можем вывести из метрики и ее производных.
(8.14)
Но у нас уже есть почти то, что нам нужно: тензор кривизны Римана, который строится на основе производных метрики. Проблема в том, что у него слишком много индексов (которые теперь мы обозначаем греческими буквами, так как исследуем пространство-время). Но есть и другой тензор — тензор Риччи, который можно получить, суммируя тензор Римана по первому и третьему индексам. Тензор Риччи получил название в честь итальянского математика Грегорио Риччи-Курбастро, который заложил основы тензорного исчисления, а также создал большую часть математического аппарата современной геометрии Римана. В 1900 году Риччи вместе со своим бывшим учеником Туллио Леви-Чевитой написал очень важную статью, из которой Эйнштейн почерпнул много знаний о тензорах. По неизвестной причине под этой статьей он поставил имя Дж. Риччи (без Курбастро), и это странно, поскольку все остальные статьи он подписывал полным именем. Может быть, Риччи подозревал, что этот тензор заслуживает краткого и запоминающегося названия.
Если использовать правило Эйнштейна, тензор Риччи можно записать так:
Rµν = Rλµλν = R0µ0ν = R1µ1ν = R2µ2ν = R3µ3ν. (8.15)
Мы поменяли местами греческие буквы, но это не страшно: в конце концов, мы можем выбрать, какие хотим. Главное, чтобы соблюдалось общее правило: в обеих частях выражения должен быть один и тот же набор свободных индексов. Тензор Риччи также является симметричным: Rµν = Rνµ.
Теперь похоже, что мы близки к цели. Вновь обозначив коэффициент пропорциональности как α, запишем следующее уравнение:
Rµν = αTµν. (8.16)
Это выражение намного более разумно, чем (8.13). Оно соответствует общей форме (8.14) и приравнивает симметричный двухиндексный тензор, составленный из метрики и ее производных, к тензору энергии-импульса. В пустом пространстве при Tµν = 0 оно дает Rµν = 0, что определенно соответствует плоскому пространству-времени Минковского (в котором все элементы тензора Римана, а значит, и тензора Риччи равны нулю).
Это выражение настолько разумно, что в октябре 1915 года Эйнштейн предложил его в качестве возможной основы общей теории относительности. Оно почти работает. Почти, но все-таки не совсем.
Проблема возникла с одним хорошо известным нам свойством энергии: она сохраняется. В общей теории относительности это довольно трудный вопрос, поскольку энергия может передаваться от материи к кривизне пространства-времени и обратно. Такие трансформации накладывают жесткие ограничения на изменение тензора энергии-импульса во времени. А тензор Риччи таким ограничениям не соответствует. Поэтому, если считать выражение (8.16) верным, следует признать, что энергия не сохраняется. В противном случае едва ли удастся найти такую метрику, при которой оно будет выполняться.
Решение этой проблемы само по себе несложно, но, к сожалению, требует более глубоких познаний в области тензоров и кривизны. Их обсуждение вынесено в приложение Б. Основная хитрость тут в том, что нужно использовать обратную метрику, gµν, которая связана с метрикой обычной, но имеет верхние индексы вместо нижних. (Если вы знаете о матрицах, то это не что иное, как матрица, обратная метрике.) При помощи обратной метрики можно определить функцию пространства-времени — скаляр кривизны Риччи:
R = gµνRµν. (8.17)
Суммирование по µ и ν в правой части полностью устраняет свободные импульсы. Поэтому при умножении на метрику gµν можно получить отдельный симметричный двухиндексный тензор, построенный на основе метрики и ее производных. Затем, как это сделал Эйнштейн в ноябре 1915 года, можно попробовать отыскать сочетание Rµν и Rgµν, которое обладает нужными свойствами, то есть остается пропорциональным Tµν без нарушения закона сохранения энергии. Существует единственно верный ответ, который сегодня называется уравнением Эйнштейна:
(8.18)
В левой части находится тензор Эйнштейна. Можно придумать для него новый символ, но выражение и само по себе несложно: это тензор Риччи и скаляр кривизны. Это окончательная форма уравнения поля в общей теории относительности, в котором представил его Эйнштейн на докладе Прусской академии наук 25 ноября 1915 года.[26]
- Предыдущая
- 43/55
- Следующая
