Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Пространство, время и движение. Величайшие идеи Вселенной - Кэрролл Шон - Страница 44
Физик Джон Уилер сформулировал общую теорию относительности так: «Пространство говорит материи, как двигаться, материя же говорит пространству, как искривляться». Первая половина этой фразы означает, что свободные частицы движутся по геодезическим линиям, а несвободные частицы (на которые действует отличная от гравитации сила) отклоняются от них примерно так же, как в механике Ньютона они отклоняются от прямых, двигаясь с ускорением. Вторую половину фразы обеспечивает уравнение Эйнштейна: решив его, можно узнать, какой будет метрика пространства-времени в любой интересующей нас ситуации. В итоге это уравнение правильно предсказало эволюцию Вселенной, существование черных дыр, распространение гравитационных волн и другие явления, о которых Эйнштейн в свое время даже и не догадывался. В этом и заключается сила хорошей научной теории: она знает гораздо больше, чем те, кто ее придумал.
(window.adrunTag = window.adrunTag || []).push({v: 1, el: 'adrun-4-144', c: 4, b: 144})В записанное нами уравнение Эйнштейна входит не просто какой-то странный коэффициент пропорциональности, а 8πG, где G — гравитационная постоянная, как и в законе всемирного тяготения Ньютона. Эту величину нельзя найти путем умозаключений или согласования с законами сохранения: нужны данные экспериментов. Для этого Эйнштейн рассмотрел «предел слабого поля», в котором гравитация почти не проявляется, а пространство-время почти, но все-таки не совсем плоское. В этих условиях хорошо сформулированная теория гравитации должна воспроизводить закон обратных квадратов Ньютона, для чего константа в выражении (8.18) должна быть равна 8πG. Удивительно, что уравнение, константа в котором получена путем наблюдений за падением яблок и движением планет, блестящим образом показывает, что было в первые минуты после Большого взрыва.
Принцип действия
В главах 3 и 4 мы рассмотрели несколько равносильных формулировок классической физики, предложенных Ньютоном, Лагранжем и Гамильтоном. Общая теория относительности — также классическая, а потому не следует удивляться тому, что ее уравнения могут быть выведены разными, но эквивалентными способами. Пойдем по пути Лагранжа и вспомним принцип наименьшего действия, который, как оказалось, очень удобен для осмысления релятивистских теорий, поскольку естественным образом уравнивает в правах пространство и время.
В прошлый раз, рассматривая этот принцип, мы говорили о частице, которая в точке x движется со скоростью v = dx/dt. Мы определили лагранжиан L как функцию, зависящую от x и ν и равную разности кинетической и потенциальной энергий. Действие — это интеграл лагранжиана по времени:
(8.19)
Из всех возможных путей из начальной точки в конечную реальная частица выберет такой, на котором действие сведется к минимуму.
Теперь ситуация немного другая. Вместо частицы, занимающей какое-то положение в пространстве, мы будем говорить о динамике метрического тензора. Общая теория относительности — это пример теории поля, поскольку тензор gµv(t, xi), в отличие от такой частицы, — поле, которое имеет значение в каждой точке пространства-времени. Рассмотрим особую функцию
, которая называется плотностью Лагранжа. Чтобы найти лагранжиан, нужно проинтегрировать ее по всему пространству:(8.20)
Обозначение d3x = dx1dx2dx3 указывает на то, что интеграл берется по всем трем измерениям пространства. Интегрируя функцию пространства-времени (плотность Лагранжа) по пространству, мы получаем функцию времени (собственно лагранжиан). Действие будет равно интегралу
по времени, или, что то же самое, интегралу по пространству-времени:(8.21)
Давайте представим себе, что еще не знаем уравнение Эйнштейна. Попробуем вывести его из принципа наименьшего действия. Задача понятна: нам нужно определить плотность Лагранжа L. Она должна состоять из метрики и ее производных (так же, как плотность Лагранжа простой частицы состоит из ее положения и его производных, а именно скорости). Хорошая новость в том, что мы ищем скалярную функцию: тензор с нулем индексов, а не с двумя, как в левой части выражения (8.14). Это существенно облегчит нашу работу.
Фактически такая функция только одна: это скаляр кривизны Риччи R. И так как других вариантов для нашей метрики, в общем-то, нет, можно записать, что
. Для правильной работы сил гравитации в формулу нужно включить гравитационную постоянную G. Кроме того, нам потребуется плотность Лагранжа для материи. Мы не можем сказать, чему она равна, поскольку это зависит от типа материи. В результате получим такое выражение:(8.22)
Вот и все. Мы определили действие, которое сводит к минимуму метрику пространства-времени. Как можно заметить, оно соответствует уравнению Эйнштейна (8.18). Правда, для простоты мы опустили одну деталь: в искривленном пространстве-времени «пространственный элемент» выглядит несколько необычно. И чтобы помнить об этом, мы записали его как
[27], а не просто d4x.
Вдумайтесь, насколько прекрасен этот подход. Предложить правильный вариант скалярной плотности Лагранжа гораздо проще, чем подобрать тензор для уравнения Эйнштейна, а наш любимый закон сохранения энергии соблюдается автоматически, без всяких усилий или проверок с нашей стороны. Разумеется, чтобы верно истолковать принцип наименьшего действия, а затем проделать все нужные выкладки (которые здесь мы, естественно, не приводим) и получить уравнение Эйнштейна, требуется сильный математик.
Эйнштейн, конечно же, был очень силен в математике, а его коллега Давид Гильберт — один из величайших математиков начала XX века — еще сильнее. («Пространство Гильберта» — одно из важнейших понятий общей теории относительности.) Летом 1915 года, незадолго до того, как было выведено знаменитое уравнение, Гильберт предложил Эйнштейну прочитать несколько лекций в Гёттингенском университете. Ученые много говорили об искривленном пространстве-времени. Эйнштейн даже гостил у Гильберта, а когда вернулся в Берлин, продолжил переписку с ним. В результате они практически одновременно пришли к уравнению (8.18): Эйнштейн — методом проб и ошибок, а Гильберт — посредством математических ухищрений.
По мнению некоторых историков, Гильберт вывел уравнение поля за несколько дней до Эйнштейна, а тот в своей работе во многом полагался на материал, полученный от Гильберта в ходе переписки. Достоверных сведений об этом нет: часть писем утрачена, документы искажены правками. Ясно лишь то, что именно Эйнштейн впервые предложил рассмотреть гравитацию в терминах кривизны пространства-времени и он же впервые публично представил свое уравнение в окончательном виде, четко обосновав с точки зрения физики. Поэтому выражение (8.18) принято называть «уравнением Эйнштейна», а формулу (8.22) — «действием Эйнштейна — Гильберта». Эти названия довольно точно передают исторический контекст, а так бывает далеко не всегда.
Эмпирические последствия
В отличие от большинства физических теорий, целью создания общей теории относительности было не объяснение каких-то загадочных аномалий, найденных в ходе экспериментов, а устранение нестыковок между другими теориями. Эйнштейн пытался согласовать давно известные представления о гравитации, прежде всего закон обратных квадратов и принцип эквивалентности, со специальной теорией относительности. В итоге он смог это сделать, стоило лишь представить, что гравитация — следствие кривизны пространства-времени.
- Предыдущая
- 44/55
- Следующая
