Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Софья Васильевна Ковалевская - Полубаринова-Кочина Пелагея Яковлевна - Страница 52


52
Изменить размер шрифта:

являются единственно возможными. Действительно, рассматривая в § 1 первого мемуара Ковалевской равенства (3), «согласно известному со времен Ньютона началу наибольших и наименьших показателей... замечаем, что каждая из следующих шести систем должна содержать по крайней мере два равных числа:

С. В. Ковалевская уравнивает между собой в каждой из указанных здесь шести систем не два, а все (четыре или три) числа и, таким образом, отбрасывает без доста¬

188

точных оснований бесчисленное множество случаев, как, например, случай

.

Второе возражение. Ковалевская не рассматривает случая кратных корней своего основного определителя, между тем как не исключена возможность существования однозначного общего интеграла и при наличии кратных корней».

Справедливость второго замечания была обнаружена Г. Г. Аппельротом [194, 195] и П. А. Некрасовым [196], которые нашли пропущенные Ковалевской решения; однако дальнейшие исследования показали, что интегралы в этом случае получаются многозначными, так что случаи эти отпали, не изменив теорему Ковалевской.

По поводу первого своего возражения Марков пишет: «Первое мое замечание не только не может быть опровергнуто, но я сильно сомневаюсь, чтобы кому-нибудь удалось в более или менее близком будущем пополнить указанный мною пробел» 5.

Однако А. М. Ляпунов очень быстро пополнил указанный Марковым пробел. Во введении к статье [197], которую он впоследствии опубликовал по этому поводу, Ляпунов говорит, что, «соглашаясь с Марковым относительно недостаточности анализа Ковалевской», он «все же склонен был думать, что вопрос решается именно таким образом, как полагала Ковалевская, и что решение его может быть достигнуто без особых затруднений, если несколько иначе приняться за дело» [13, с. 286]. «Вследствие этого,— пишет Ляпунов,— я решил рассмотреть вопрос с другой точки зрения и попытаться приложить к нему методу, которая давно уже казалась мне наиболее подходящей для решения вопросов такого рода» [13, с. 124, 288].

Статья Ляпунова задержалась, и в это время появилась книга Г. Г. Аппельрота «Задача о движении тяжелого твердого тела около неподвижной точки» [195], в которой он, опираясь на общие исследования, относящиеся к системам нелинейных уравнений, в том числе и на теоремы Ляпунова, доказывает теорему Ковалевской.

Что касается работы Ляпунова, то в пей дается не только доказательство теоремы, высказанной Ковалев¬

189

ской, но и более общей теоремы, а именно: из всех слу-* чаев, когда постоянные А, В, С, х0, у о, Zo вещественны и Л, В, С, все отличны от нуля, известные три случая суть единственные, в которых функции р, g, г, 4, 4', ч”, опре-* деляемые уравнениями (1), однозначны при всяких на^ чальных значениях. Другими словами, решение не может иметь вида ряда Лорана с бесконечной главной частью (Ковалевская рассматривала лишь ряды Лорана с конечной главной частью).

Метод Ляпунова заключается в следующем: давая малые изменения параметрам р0, д0, г0, /о, go, h0, он варьирует решение системы. При этом для вариаций решений получается система линейных уравнений с переменными коэффициентами. Однако, если за исходные решения взять простейшие частные решения заданной системы, имеющие особыми точками полюсы:

то получаемая линейная система будет эйлеровской, и вопрос о ее однозначных решениях исследуется до конца. А. М. Ляпунов останавливается также специально на рассмотрении случая вещественных начальных значений, отвечающих реальной физической задаче.

Исследования Ляпунова, проведенные с мастерством большого ученого, завершили задачу об однозначных общих интегралах проблемы о вращении твердого тела вокруг неподвижной точки.

По поводу теоремы Ковалевской, обобщенной Ляпуновым, можно добавить следующее. Математическая интуиция правильно подсказала Ковалевской ее предположение. То, что она не проделала подробно исследований, указанных Марковым, психологически понятно: вероятность

получения таким образом новых случаев мала, так как, уравнивая показатели попарно, мы получаем для шести постоянных р0, до, г0, /0, go, ho больше шести уравнений.

Мы видим, таким образом, что выступления А. А. Маркова содействовали привлечению внимания А. М. Ляпунова к работе Ковалевской и ускорили процесс завершения исследований, начатых ею. Однако жаль, что выступления

А.       А. Маркова были облечены в такую форму, которая принесла Софье Васильевне немало огорчений, и жаль, что А. А. Марков недооценил значения работы первой русской женщины-математика. Но таков был характер

А.       А, Маркова. Об этом свидетельствует постановление

190

Московского Математического общества на заседании 17 ноября 1892 г. после разбора ряда заявлений А. А. Маркова и доклада П. А. Некрасова:

«Общество постановило: так как голословные заявления, каковы заявления проф. А. А. Маркова относительно трудов С. В. Ковалевской, В. Г. Имшенецкого, II. В. Бугаева и Г. Г. Аппельрота, бесполезны для науки, и суждения о таковых заявлениях лишь бесплодно отвлекают Общество от его занятий, то впредь не принимать к обсуждению в Обществе никаких голословных и резких суждений» [198, с. 845].

Мы уже знаем, что французские математики восхищались работой Ковалевской. Она имела и других поклонников своего таланта, к каковым относился Г. Г. Ап- пельрот, посвятивший задаче о вращении всю свою долгую жизнь. Он говорил, что в работах Ковалевской о вращении твердого тела виден блеск таланта.

Профессор В. В. Голубев 6 по поводу математической идеи, которой руководствовалась Ковалевская, писал:

... чтобы понять эту идею, надо взглянуть на нее с точки зрения тех научных интересов, которые были в школе Вейерштрасса и которые полностью разделяла Софья Васильевна.

Два обстоятельства бросаются в глаза при чтении работы о движении твердого тела, если сопоставить ее с позднейшими комментариями, дополнениями и пояснениями.

1. С. В. Ковалевская в своей работе нигде не высказывает особого восторга по поводу найденного ею в рассмотренном ею случае нового алгебраического интеграла. Она пользуется им как удобным дополнительным обстоятельством, позволившим значительно упростить решение,— и это все...

2. С. В. Ковалевская нигде не ищет случаев с однозначными интегралами, она ищет случаи с мероморфными интегралами. А. А. Марков с присущим ему стремлением критиковать во что бы то ни стало усмотрел в таком ограничении повод для существенной критики работы. Между тем, по моему мнению, именно это ограничение и открывает основную идею работы.

Дело мне представляется следующим образом.

В 1876 г. Вейерштрасс напечатал свои исследования (здесь [199].—Я. К.) по изображению целых и мероморфных функций; эти исследования настолько привлекли внимание ученых, что в 1879 г. Пикар перевел эти исследования на французский язык (здесь [200].—Я. К.).

Очевидно, всякая задача (механическая пли иная), которая приводила бы к уравнениям, интегрируемым в целых функциях времени, могла считаться разрешенною до конца, так как тейлоровское разложение интеграла давало бы его значение для любого

6 Ознакомившись с перепиской С. В. Ковалевской, В. В. Голубев поместил некоторые из ее писем в своей книге [165].

191

момента. Но по теореме Вейерштрасса мероморфные функции представляют отношение целых; следовательно, с некоторыми дополнительными осложнениями то же заключение приложимо и к уравнениям, имеющим мероморфные интегралы. Их также можно было считать до конца решенными при помощи разложений в ряды тех целых функций, отношения которых представляют искомые мероморфные интегралы. При этом совершенно не важно, выражаются ли эти целые функции через изученные или нет.