Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Пространство, время и движение. Величайшие идеи Вселенной - Кэрролл Шон - Страница 9
Посмотрев на график функции, можно интуитивно понять, что скорость машины связана с наклоном кривой в каждой ее точке: чем круче она изогнута вверх или вниз, тем выше скорость. Почти горизонтальный участок графика показывает, что с течением времени положение машины изменяется медленно, то есть скорость очень мала. Крутой участок, напротив, говорит о быстром перемещении, то есть высокой скорости.
(window.adrunTag = window.adrunTag || []).push({v: 1, el: 'adrun-4-144', c: 4, b: 144})Представим себе прямую линию, которая касается кривой x(t) в какой-то момент времени t0. Она называется касательной линией в этой точке. Скорость машины в момент t0 будет равна углу наклона такой касательной. Нам нужно предложить систематический подход к определению и вычислению угла наклона касательной в зависимости от времени.
Это довольно просто, когда машина едет с постоянной скоростью, то есть график функции представляет собой прямую, как на следующем рисунке. Ее наклон, а значит, и скорость вычислить очень легко: достаточно разделить изменение положения на время, в течение которого оно менялось. Обозначим изменение положения за Dx, а промежуток времени — за Dt. Заглавная греческая буква дельта (D) часто используется, чтобы показать изменение какой-то величины. (При этом обозначение Dx представляет собой цифру, изменение x, а не произведение какой-то величины D на x.) Соответственно, скорость составит:
(2.3)
Настало время поговорить об одном из базовых понятий дифференциального исчисления. Если функция относительно плавная, то есть не скачет как попало от значения к значению, на очень коротких отрезках она будет похожа на прямую. Чем больше мы будем увеличивать масштаб, тем более прямолинейной она будет казаться.
И это подсказывает нам, что делать. Возьмем какой-то момент времени t, в который мы хотим посчитать скорость, а также промежуток Dt, конечным моментом которого будет t + Dt. Используя нашу функцию, мы можем определить два положения машины: начальное x(t) и конечное x(t + Dt), а значит, изменение положения за Dt:
(2.4)
Если график функции криволинеен, деление суммарного изменения положения на промежуток времени даст нам среднюю скорость за это время:
(2.5)
Это выражение похоже на (2.3), но, в отличие от него, дает не скорость равномерного движения, а среднюю скорость за некоторый промежуток времени:
Но это не совсем то, что мы ищем: нам нужно вычислить скорость в каждый момент времени. Возможно, вы уже поняли, к чему я веду. Рассмотренный нами промежуток Dt взят совершенно произвольным образом. Мы можем выбрать любой. Давайте его уменьшим. Чем меньше будет Dt, тем меньше получится Dx. По мере того как Dx и Dt будут стремиться к нулю, их частное Dx/Dt будет стремиться к некому числу, отличному от нуля, а фактически — именно к тому, что мы ищем: углу наклона касательной к графику функции в начальный момент времени.
Только что описанные действия называются взятием предела при стремящемся к нулю Dt. Ноль, деленный на ноль, — это не какое-то число. Математически говоря, это значение не определено. Однако если мы возьмем предел (lim) стремящихся к нулю Dt и Dx, их частное даст нам скорость v — определенное значение. Такой предел называется производной функции x(t) и записывается следующим образом:
Вот и все. Мы разобрались с тем, что такое производная: это угол наклона кривой в некоторой точке, которую мы получаем как предел последовательности линий, постепенно приближающихся к касательной в этой точке. Мы рассмотрели пример зависимости x от t, и в данном случае производная представляет собой скорость. Однако понятие производной универсально. К примеру, ускорение — это производная скорости по времени:
(2.7)
Скорость измеряется в метрах в секунду, а ускорение — в метрах в секунду за секунду, то есть показывает, как быстро изменяется скорость. Ускорение объекта, свободно падающего на землю под действием силы тяжести, составляет примерно 9,8 метра в секунду за секунду (сокращенно — м/c2).
Если рассматривать некую функцию, зависимость от t, то есть f(t), ее производной будет df/dt. Мы всегда можем найти производную функции по переменной, зависимость от которой она определяет. При этом не важно, как именно обозначена переменная: мы можем выбрать любую удобную и понятную нам букву. Традиционно время обозначается буквой t, а расстояние буквой x, но этот выбор всегда остается за нами.
Значения dx и dt называются бесконечно малыми величинами. Мы как бы делим их друг на друга и получаем v. Но все не так просто. Будь они числами, мы бы фактически делили ноль на ноль, а это запрещено. Поэтому dx и dt следует понимать как обозначения, показывающие бесконечное приближение к нулю величин Dx и Dt. Их частное будет вполне определенным числом. Что тут можно сказать? Математики приложили немало усилий, чтобы придать этому смысл. Физики, со своей стороны, подходят к вопросу практически: работает — и отлично, можно переходить к следующей проблеме.
Сейчас вас, скорее всего, беспокоят два вопроса. Во-первых, мы пока что не сделали ничего сложного: порассуждали об углах наклона касательных линий и дали определение производной. А где же сложности высшей математики, которыми всех так часто пугают? Во-вторых, непонятно, что делать с этим определением. Оно довольно абстрактно. Как применять его в жизни: к реальным функциям или же показаниям одометра? Нам снова придется маяться с приращениями и пределами?
Два эти вопроса связаны и, в общем-то, исключают друг друга. Серьезно взявшись за дифференциальное исчисление, мы погрузились бы в мир утомительных, но достаточно четких правил дифференцирования, которые позволяют найти производную любой функции. Рассмотрим, к примеру, простую функцию f(x) = ax + b, где a и b — постоянные параметры (обычно называемые константами)[6]. Такая функция называется линейной, поскольку ее график представляет собой прямую.
Чтобы найти производную этой функции, достаточно просто подумать. Константа b не влияет на наклон прямой, а значит, мы можем ее не учитывать. Константа a, напротив, и есть этот уклон, ведь если x изменится на Dx, f(x) изменится на aDx, то есть Df(x)/Dx = a, какое значение x мы бы ни взяли. Поэтому
(2.8)
Производная линейной функции — константа, равная множителю при x в исходном уравнении.
Увы, наклон большинства функций не постоянен, а изменяется от точки к точке. Поэтому их производные будут сложнее. К примеру, производная параболической функции f(x) = x2 такова:
- Предыдущая
- 9/55
- Следующая
