Вы читаете книгу
Бесчисленное поддается подсчету. Кантор. Бесконечность в математике
Коллектив авторов
Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Бесчисленное поддается подсчету. Кантор. Бесконечность в математике - Коллектив авторов - Страница 16
Математик Бернард Больцано родился в Праге в 1781 году. В сочинении «Парадоксы бесконечного», опубликованном в 1851-м, спустя три года после его смерти, он предвосхитил некоторые идеи Кантора, обнародованные гораздо позже, пусть даже он не упомянул о существовании нескольких уровней бесконечности и не создал полноценную теорию математической бесконечности.
Тем не менее до середины 1880-х годов и Кантор, и Дедекинд допускали только существование групп, образованных числами или геометрическими точками, а не любыми объектами. Таким образом, отвечая на поставленный вопрос, мы можем сказать, что хотя в 1870-е годы Кантор и Дедекинд уже использовали связанный со множествами понятийный аппарат в своих работах, эти термины еще не были развиты до конца, так как применялись только к группам, состоящим из чисел или геометрических точек. Возможность того, что множество может состоять из любых объектов, Кантор принял во внимание только в 1883 году, но и то ограничился множествами, образованными числами, хоть и особого вида.
Необходимо подчеркнуть, что концептуальный переход к принятию идеи того, что множества могут быть образованы любыми объектами, уже был заложен в определении мощности, которое Кантор обнародовал в 1877 году. Утверждая, что мощность — это свойство группы, коллекции, которое возникает при абстрагировании от природы составляющих его членов, он подчеркивает: не важно, какими членами оно образовано.
Если мы возьмем любую группу и заменим, например, числа или точки буквами, идеями или любыми другими объектами, то ее мощность останется такой же, поскольку понятие мощности не зависит от природы членов коллекции.
Статья 1883 года «Основы общего учения о многообразиях» стала кульминацией научной карьеры Кантора. К сожалению, этот период его жизни был также отмечен серьезными личными проблемами.
Эдуард Гейне, руководивший первыми исследованиями Кантора в Галле, умер 21 октября 1881 году. Тогда ученый задался амбициозной целью. Раз ему не удавалось перейти в престижный университет вроде Берлинского или Геттингенского, он решил привести в Галле знаменитых ученых, которым было близко его учение о бесконечности, и создать исследовательский центр. В качестве первого шага он убедил дирекцию университета предложить одно освободившееся место Дедекинду.
К большому удивлению и разочарованию Кантора, тот отклонил это предложение, и место было отдано Альберту Вангерину — второстепенному геометру, далекому от идей Кантора.
Причины, побудившие Дедекинда отказаться, нам точно не известны. К тому времени он уже 20 лет жил в родном Брауншвейге, где возглавлял коллегиум, в котором когда-то учился сам, и занимался исследовательской работой в своем темпе, без давления со стороны. Поэтому, возможно, причиной было банальное нежелание менять стиль жизни.
Я представляю себе множество как пропасть.
Георг Кантор — немецкому математику Феликсу Бернштейну, 1899 год
В любом случае Кантора этот отказ очень обидел, и дружба стала быстро угасать, а в конце 1882 года десятилетняя переписка и все прочие контакты были полностью прерваны.
Практически в тот же самый период, когда завершились отношения Кантора с Дедекиндом, он завязал переписку со шведским ученым Іестой Миттаг-Леффлером (1846— 1927) — известным математиком, который, как и Дедекинд, интересовался областью бесконечного. Тогда же, в 1882 году, Миттаг-Леффлер основал журнал Acta Mathematica. И Кантор обрел подходящую платформу для публикации своих работ, не попадая в зону влияния Кронекера. С 1883 по 1885 год в Acta Mathematica были опубликованы три статьи, в которых Кантор рассматривал вопросы, связанные с решением задачи контиуума.
Однако отношения с Миттаг-Леффлером не продлились долго. В 1884 году тот убедил Кантора отозвать одну из статей, будучи уверенным в том, что действует в пользу автора. Миттаг-Леффлер понимал, что статья, озаглавленная «Принципы теории порядковых типов», слишком умозрительна, ей недостает ясных и четких результатов, и она может навредить репутации теории множеств. Он ответил Кантору, что тот написал слишком много, но так и не предъявил конкретных результатов, а это может дискредитировать теорию, и в этом случае потребуется еще сто лет, прежде чем на его идеи вновь обратят внимание. Кантор плохо воспринял совет Миттаг-Леффлера, посчитав, что тот намекает, будто ему надо подождать еще сто лет с публикацией своих идей:
«Если верить Миттаг-Леффлеру, мне придется ждать до 1984 года, что кажется слишком строгим требованием! [...] Разумеется, я и знать больше ничего не желаю об Acta Mathematical.»
Кантор написал это в 1885 году, прекратил всякое общение с Миттаг-Леффлером и больше не отправил в Acta Mathematica ни одной статьи. «Принципы теории порядковых типов» так и не были опубликованы. Ученый переживал один из самых тяжелых периодов своей жизни. Потеряв Дедекинда, в глазах которого, как считал Кантор, его оклеветали, не имея возможности создать исследовательский центр в Галле или попасть в желанные университеты Берлина или Геттингена, в мае 1884 года он впал в депрессию. Ему потребовалось немало времени, чтобы выйти из нее. Его математическое творчество, так ярко раскрывшееся в «Основах общего учения о многообразиях» 1883 года, угасло вплоть до 1890-х годов. В этот переходный период Кантор опубликовал несколько статей, в которых с переменным успехом исследовал философские последствия и возможные применения в физике своей теории бесконечности. Он также увлекся идеей о том, что произведения Шекспира были на самом деле написаны Фрэнсисом Бэконом. Эта теория появилась во второй половине XVIII века, и хотя большинство ученых считают ее абсурдной, даже сегодня у нее есть сторонники. Кантор потратил много денег на приобретение старинных изданий Шекспира и написал три монографии по этой теме.
Но вернемся к самому блестящему периоду в карьере Кантора, к статье «Основы общего учения о многообразиях» 1883 года. История ее создания началась еще в 1869 году, когда Георг Кантор приехал в Галле и в качестве темы исследования Эдуард Гейне предложил ему задачу, связанную с тригонометрическими рядами Фурье. Что такое тригонометрический ряд? Представим себе закрепленную сверху пружину, к нижнему концу которой подвешен определенный груз. Исходное положение пружины на рисунке 1 обозначено буквой А. Теперь потянем груз вниз, пока не достигнем положения ß, и отпустим его. Пружина расширится и сожмется, пройдя через точки С, Д Е и F, а также через все промежуточные. Предположим, что перед нами идеальная ситуация, и пружина никогда не перестанет двигаться и всегда будет возвращаться в положение максимального сжатия (D на рисунке 1) и максимального растягивания (В и F). Если мы соединим последовательные положения пружины кривой линией, то получим математическое описание ее движения (см. рисунок 2). Заметим, что поскольку груз несколько раз проходит через одни и те же точки, график повторяется.
Магнус Гёста Миттаг-Леффлер родился в Стокгольме (Швеция) 16 марта 1846 года. Его талант проявился уже в ранней юности; у него было много интересов, среди которых — наука и литература. В1865 году он записался в Уппсальский университет (опять же в Швеции), намереваясь стать государственным чиновником, но вскоре перешел на математический факультет и в 1872 году защитил докторскую диссертацию. Миттаг-Леффлер внес большой вклад в область исчисления, в аналитическую геометрию, теорию вероятностей, теорию функций; он был членом почти всех математических обществ Европы и получил несколько званий почетного доктора наук в таких университетах, как Оксфордский, Кембриджский, Болонский и университет Осло. В 1882 году он основал журнал Acta Mathematica, который курировал до самой смерти 7 июля 1927 года. Журнал издается до сих пор.
- Предыдущая
- 16/30
- Следующая