Вы читаете книгу
Бесчисленное поддается подсчету. Кантор. Бесконечность в математике
Коллектив авторов
Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Бесчисленное поддается подсчету. Кантор. Бесконечность в математике - Коллектив авторов - Страница 15
Откуда же тогда нам известно, что существует число 0,110001000000000000000001000..., то есть число Лиувилля? Как мы можем убедиться, что это действительно вещественное число? (Кронекер, напомним, так не считал.) По Кантору, достаточно показать, что ему соответствует фундаментальная последовательность. В данном случае это 0,1; 0,11; 0,110001;... Существование этой фундаментальной последовательности гарантирует существование числа.
Теперь рассмотрим, как определение Кантора выражает мысль о том, что каждой точке числовой оси соответствует вещественное число.
Числа 0 и 1 наносятся на прямую произвольно, но после этого позиции вещественных чисел строго определены. Предположим, у нас есть точка Р, для которой мы не подобрали никакого соответствующего рационального числа (см. рисунок 13). Как мы можем доказать, что этой точке соответствует число (разумеется, рациональное)?
Возьмем последовательность точек, которые соответствуют рациональным точкам и постепенно все больше приближаются к Р. Они образуют фундаментальную последовательность, которой будет соответствовать вещественное число, и оно же будет соответствовать точке Р. На рисунке 13 представлен пример, где точка Р соответствует числу π.
РИС. 13
Однако, по мнению Кантора (и тут мы подходим к идее бесконечности), еще одним фундаментальным свойством континуума является тот факт, что он несчетен (множество счетно, если эквивалентно натуральным числам). В серии из шести статей, опубликованных с 1879 по 1882 год в Mathematische Annalen, среди прочих вопросов о бесконечных множествах он рассмотрел альтернативные определения континуума, в которых несчетность являлась одной из его основных характеристик.
Тот факт, что точки отрезка образуют несчетное множество, позволяет решить парадокс Аристотеля. Если отрезок состоит из точек, то, поскольку у каждой точки нулевая длина, общая длина отрезка должна составить 0 + 0 + 0 + 0 + ... = 0. Сколько нулей мы складываем? Ответ: бесконечное количество нулей; но какова мощность этой бесконечности?
Когда мы пишем 0 + 0 + 0 + 0 +..., мощность складываемых нулей равна ******** ..., то есть она такая же, как у натуральных чисел. Мы складываем счетное количество нулей! Сумма счетного количества нулей действительно равна нулю, поэтому континуум не может быть счетным.
Но у несчетных сумм свои правила, которые отличаются от правил счетных сумм, и интересно, что сумма несчетного количества нулей может быть больше нуля. Таким образом, как говорил Кантор, мы видим, что различие между счетностью и несчетностью имеет решающее значение в определении вещественных чисел и, следовательно, в исчислении. Но картина еще не завершена. Почему в заголовке статьи, в которой Кантор дает определение вещественным числам, упоминаются «тригонометрические ряды»? Что это такое и какую роль они сыграли в развитии научной мысли Кантора? Об этом — в следующей главе.
ГЛАВА 4
Бесконечные ординальные числа
В 1883 году Георг Кантор опубликовал статью «Основы общего учения о многообразиях», которая стала кульминацией его математического творчества. В ней он впервые дал определение множеству бесконечных чисел, которые назвал ординальными. Зерно идей, изложенных в этой работе, уже присутствовало в статье, которую Кантор написал десятью годами ранее, но для того чтобы полностью развить их, ему требовалось преодолеть интеллектуальные предубеждения своей эпохи.
В подходе к математике Георга Кантора и Рихарда Дедекинда было много общего. В частности, оба соглашались с необходимостью ввести в нее понятие множества. Но что это такое — «понятие теории множеств»?
В статье 1883 года, озаглавленной «Основы общего учения о многообразиях» с подзаголовком «Математически-философский опыт учения о бесконечном» и изданной Кантором самостоятельно в виде отдельной монографии (с «самыми удивительными, самыми неожиданными идеями»), он отмечал:
«Mannigfaltigkeitslehre [учение о многообразиях]. Этими словами я обозначаю одну чрезвычайно обширную дисциплину, которую до этого я пытался разработать лишь в специальной форме арифметического или геометрического учения о множествах. Под «многообразием» или «множеством» я понимаю вообще всякое многое, которое можно мыслить как единое, то есть всякую совокупность определенных элементов, которая может быть связана в одно целое с помощью некоторого закона».
«Множество», таким образом, — это синоним «группы», в том смысле, в котором мы обычно употребляем это слово. Данное определение сыграло важнейшую роль в развитии математики, установив, что множество — это объект, отличный по своей сути от своих составляющих. Несколько лет спустя британский логик Бертран Рассел (1872-1970) проиллюстрировал это различие словами: «Табун лошадей — не то же самое, что лошадь».
Множество — как закрытый мешок, в котором содержатся абсолютно определенные вещи, но их нельзя увидеть, мы о них ничего не знаем, кроме того, что они существуют и они определены.
Рихард Дедекинд в письме немецкому математику Феликсу Бернштейну, 1899 год
Так, множество всех рациональных чисел, которое обычно обозначается буквой Q, имеет особые характеристики. Они относятся только к Q в целом, но не к рациональным числам по отдельности, например счетность. В случае, когда мы говорим о Q как о совокупности актуально существующей, определение множества подразумевает, что мы должны принять идею актуальной бесконечности.
Мы можем совершать операции с числами — складывать или умножать — так же, как с множествами (например, объединять). Если есть два множества, их объединение даст другое множество, включающее в себя все объекты, из которых состоят эти два множества. Если мы возьмем множество натуральных чисел N, членами которого являются 0, 1,2, 3, ..., и множество отрицательных целых чисел Ν', то их объединением будет множество целых чисел, которое обычно обозначается буквой Ζ (первой буквой немецкого слова Zahl, «число») и содержит одновременно члены N и Ν'. В записи математическими символами это выглядело бы так: N U Ν’ = Ζ (см. рисунок).
Одна из особенностей, которую Кантор описал в своей статье 1895 года, проиллюстрирована на рисунке: объединение двух счетных множеств всегда дает в результате счетное множество. Изучение свойств, которые относятся либо к множествам, либо к объектам самим по себе, составляет предмет так называемой теории множеств, и Кантор считается ее создателем, поскольку первым начал исследовать эти свойства. Одним из важнейших аспектов теории множеств является изучение мощности бесконечных множеств. Именно поэтому говорят, что теория множеств и теория математической бесконечности — это, в сущности, одна и та же теория.
Объединение двух множеств содержит одновременно элементы и того и другого.
Выходит, что теория множеств родилась в 1883 году? Почему же тогда задолго до этого, в 1872 году, Кантор и Дедекинд уже сошлись на том, что в математику необходимо ввести понятия множеств?
В 1872 году Кантор опубликовал статью, в которой было предложено решение проблемы континуума. Решение состояло в том, чтобы найти такое определение вещественных чисел, которое не опиралось бы на геометрические понятия. Важно отметить, что уже тогда Кантор знал: эта задача приведет его к актуально бесконечным множествам.
В том же году Дедекинд опубликовал решение вопроса континуума, близкое к предложенному Кантором и основанное на так называемых дедекиндовых сечениях. Теперь понятно, почему в 1872 году двое ученых сочли, что их взгляды на математику настолько схожи.
- Предыдущая
- 15/30
- Следующая