Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Космические рубежи теории относительности - Кауфман Уильям - Страница 32
С расстояния в 2 шварцшильдовских радиуса (60 км от чёрной дыры в 10 раз более массивной, чем Солнце) чёрная дыра - основной объект в небе перед космическим кораблем. Её угловой поперечник вырос уже до 136° (рис. 8.15, В). Всё видимое вокруг неё из носового иллюминатора небо чрезвычайно сильно искажено и заполнено многократными изображениями огромного количества звёзд и галактик. Даже из кормового иллюминатора небо наблюдается уже сильно искаженным.
С «высоты» фотонной сферы (45 км от чёрной дыры в 10 раз массивней Солнца) изображение чёрной дыры занимает всё поле зрения носового иллюминатора космического корабля, как видно на рис. 8.15, Г. По краям поля зрения кормового иллюминатора теперь видны бесчисленные многократные изображения.
По мере дальнейшего приближения космического корабля к горизонту событий чёрная дыра начинает просматриваться по краям поля зрения кормового иллюминатора. Вся внешняя Вселенная видна теперь как маленький кружок в центре кормового иллюминатора (рис. 8.15, Д). Размеры этого кружка определяются углом раствора конуса выхода, о котором мы упоминали выше. На самом горизонте событий (это примерно в 30 км от центра чёрной дыры в 10 раз более массивной, чем Солнце), где конус схлопывается, все звёзды неба собираются в одной точке в центре поля зрения кормового иллюминатора.
Вспомним, что наш космический корабль снабжен мощными ракетными двигателями, способными остановить его падение на разных расстояниях от чёрной дыры, так что астрономы могут не спеша вести свои наблюдения. Однако гравитационное поле чёрной дыры настолько мощное, что уже на расстоянии нескольких шварщиильдовских радиусов двигатели ракеты должны работать на полную мощность. Ещё задолго до того, как астрономы доберутся до точки, из которой они смогли бы сделать снимок Б, им придется испытать действие ускорения, составляющего тысячи g, которое буквально расплющит их о переборки корабля.
Чтобы избежать подобной участи, другие два астронома принимают решение совершить свободное падение на чёрную дыру до конца. Их космический корабль новейшей конструкции вообще лишен ракетных двигателей, которые замедляли бы его падение. Более того, чтобы избежать разрывающего действия приливных сил, произведена микроминиатюризация как космического корабля, так и самих космонавтов. Тем не менее они понимают, что и такая экспедиция равносильна самоубийству, ибо, попав под горизонт событий, они будут обречены упасть на сингулярность. Эти новые два астронома видят из иллюминаторов своего обреченного на гибель космического корабля совершенно иную картину. Однако, чтобы понять смысл этой картины, нам придется сначала рассмотреть вопрос о природе шварцшильдовской геометрии.
9
ГЕОМЕТРИЯ РЕШЕНИЯ ШВАРЦШИЛЬДА
В 1916 г., всего лишь через несколько месяцев после того, как Эйнштейн опубликовал свои уравнения гравитационного поля в общей теории относительности, немецкий астроном Карл Шварцшильд нашёл решение этих уравнений, описывающее простейшую чёрную дыру. Шварцшильдовская чёрная дыра «простая» в том смысле, что она сферически симметрична (т.е. у неё нет «предпочтительного» направления, скажем оси вращения) и характеризуется лишь массой. Поэтому здесь не учитываются те усложнения, которые вносят вращение, электрический заряд и магнитное поле.
Начиная с 1924 г. физики и математики начали осознавать, что в шварцшильдовском решении уравнений гравитационного поля есть что-то необычное. В частности, у этого решения имеется математическая особенность на горизонте событий. Сэр Артур Эддингтон был первым, кто подобрал новую систему координат, в которой этот эффект отсутствует. В 1933 г. Жорж Лемэтр продвинул эти исследования дальше. Однако лишь Джон Лайтон Синг раскрыл (в 1950 г.) истинную сущность геометрии шварцшильдовской чёрной дыры, открыв тем самым пути для последующих важных работ М. Д. Крускала и Г. Секереша в 1960 г.
Чтобы разобраться в деталях, выберем прежде всего трёх ребят - Борю, Васю и Машу - и представим себе, что они парят в космосе (рис. 9.1). Всегда можно взять в космосе произвольную точку и определить положения всех троих, измеряя расстояния от них до этой точки. Например, Боря находится на расстоянии 1 км от этой произвольной начальной точки отсчета, Вася - в 2 км, а Маша - в 4 км. Характеристику положения в таком случае обычно обозначают буквой r и называют радиальным расстоянием. Таким путём можно выразить расстояние до любого объекта во Вселенной.
РИС. 9.1. Расположение в пространстве. Расположение каких-либо объектов в пространстве может быть охарактеризовано расстоянием по радиусу от произвольной начальной точки отсчета до каждого из объектов.
РИС. 9.2. Диаграмма пространства-времени. Можно построить такую диаграмму пространства-времени, на которой по пространственной оси откладывается радиальное расстояние от произвольной точки начала отсчета. Масштабы, отложенные по осям, таковы, что световые лучи распространяются по прямым с наклоном 45°.
Заметим теперь, что наши три приятеля неподвижны в пространстве, но «перемещаются» во времени, ибо становятся всё старше и старше. Эту особенность можно изобразить на пространственно-временной диаграмме (рис. 9.2). Расстояние от произвольной начальной точки отсчета («начала») до другой точки в пространстве откладывается здесь вдоль горизонтальной оси, а время - вдоль вертикали. Кроме того, как и в частной теории относительности, удобно взять на координатных осях этого графика такие масштабы, чтобы лучи света описывались прямой с наклоном 45°. На такой диаграмме пространства-времени мировые линии всех троих ребят идут вертикально вверх. Они всё время остаются на одних и тех же расстояниях от точки начала (r = 0), но постепенно становятся всё старше и старше.
Важно осознать, что левее точки r = 0 на рис. 9.2 вообще ничего нет. Эта область соответствует чему-то, что можно назвать «отрицательным пространством». Так как невозможно находиться «на расстоянии минус 3 м» от какой-либо точки (начала отсчета), то расстояния от начала всегда выражаются положительными числами.
РИС. 9.3. Чёрная дыра в пространстве и в пространстве-времени. Шварцшильдовская чёрная дыра изображена слева в пространстве. Она состоит из сингулярности, окруженной горизонтом событий. Справа дана диаграмма пространства-времени для той же дыры. Расстояние измеряется радиально от сингулярности.
Перейдём теперь к шварцшильдовской чёрной дыре. Как уже говорилось в предыдущей главе, такая дыра состоит из сингулярности, окруженной горизонтом событий на расстоянии 1 шварцшильдовского радиуса. Изображение такой чёрной дыры в пространстве дано на рис. 9.3 слева. При изображении чёрной дыры на пространственно-временной диаграмме произвольную точку начала отсчета координат для удобства совместим с сингулярностью. Тогда расстояния измеряются непосредственно от сингулярности по радиусу. Получившаяся диаграмма пространства-времени изображена на рис. 9.3 справа. Подобно тому как наши приятели Боря, Вася и Маша изображаются на рис. 9.2 вертикальными мировыми линиями, мировая линия горизонта событий идет вертикально вверх в точности на 1 шварцшильдовский радиус правее мировой линии сингулярности, которая на рис. 9.3 изображена пилообразной линией.
Хотя в рис. 9.3, изображающем шварцшильдовскую чёрную дыру в пространстве-времени, как будто нет ничего загадочного, к началу 1950-х годов физики начали понимать, что этой диаграммой суть дела не исчерпывается. У чёрной дыры имеются разные области пространства-времени: первая между сингулярностью и горизонтом событий и вторая за пределами горизонта событий. Мы не смогли полностью выразить в правой части рис. 9.3, как именно связаны между собой эти области.
- Предыдущая
- 32/75
- Следующая