Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Ошибка Коперника. Загадка жизни во Вселенной - Шарф Калеб - Страница 36
Это очень красивая система, однако ее понимание – лишь первый шаг к ответу на вопрос, как же образовались и развились все эти микробиологические механизмы, а в особенности – как они пережили все тяготы среды обитания на планете в последние 3–4 миллиарда лет. Отчасти вопрос сводится к тому, как именно относительно небольшой набор молекулярных двигателей, в основном – белковых комплексов, оказался закодирован в генетическом материале одноклеточных микроорганизмов.
Результаты геохимических, а также генетических исследований позволяют нам однозначно сказать, что большинство кодов ДНК у этих двигателей восходят к глубокой древности. Некоторые в буквальном смысле оказались запечатлены в камне, поскольку целые экосистемы, которые когда-то влияли на химическое равновесие океанов и атмосферы Земли, оставили по себе слои окаменелых пород. А еще все они прослеживаются в генетических последовательностях современных живых организмов.
Некоторые молекулярные двигатели требуют для кодирования своих структур значительного объема генетической информации. Например, фотосинтез с производством кислорода – самый сложный естественный процесс передачи энергии с участием множества молекулярных соединений – описывается более чем 100 генами. И все же у нас есть свидетельства, что фотосинтез как инструмент обмена веществ[144] существовал как минимум 3 миллиарда лет назад. Очевидно, что подобные хитроумные молекулярные механизмы развились уже на самых ранних этапах истории Земли.
Если мы поймем, каково происхождение всех этих метаболических процессов, то приблизимся к пониманию происхождения жизни как таковой, а пока что это тайна. При этом теорий и гипотез существует множество. Например, некоторые ученые утверждают, что химические и электрические градиенты в клеточных оболочках подозрительно напоминают те, которые наблюдаются при нарушении химического равновесия и в микроскопических минеральных структурах, обнаруженных в глубоководных термальных источниках[145]. А это может указывать на возможность неорганического происхождения жизни – иначе говоря, на то, что жизнь зародилась исключительно по геофизическому и геохимическому образцу.
Подобные предположения о связи между зарождением жизни и небиологическими минеральными структурами и химическими процессами очень интересны, однако явных доказательств мы пока не получили. Есть и другие гипотезы – многоступенчатые химические реакции между органическими веществами, сложные системы реакций аминокислот, вызванные катализаторами вроде бора и молибдена в водяной среде. В результате подобных цепочек реакций могли возникать основные элементы биологии – от липидов до первых рибосом, которые помогают синтезировать белки.
В сущности, земная биология могла произойти и из разных источников, а не из одного. В таком случае нам следует понять, как сошлись воедино биологически полезные молекулярные составляющие из разных источников и как им удалось создать более устойчивую структуру. К счастью, это нам подсказывает сама природа.
Микробы (как, скорее всего, и их предки) печально знамениты так называемым горизонтальным переносом генов[146]: они умеют обмениваться фрагментами генетического материала между видами. Это примерно как обмениваться визитными карточками или проектами каких-нибудь изобретений. В результате выследить, как, где и когда возникают те или иные гены, становится гораздо труднее. Однако подобная неразборчивость приводит к одному важнейшему результату, который, скорее всего, прямо повлиял на зарождение жизни. В итоге такого бесконтрольного распространения генов самые важные гены оказались более или менее повсюду.
Если заплыть на корабле в открытый океан, взять пробу холодной морской воды и привезти к себе в лабораторию, можно, как правило, обнаружить в ней и те разновидности бактерий или архей, которые в норме не очень хорошо себя чувствуют на поверхности моря. Например, среди прочих не слишком уместных организмов там, скорее всего, найдутся так называемые термофилы – организмы, которым для обмена веществ и размножения нужна очень высокая температура. Холодная морская вода может быть сколько угодно неблагоприятна для подобных живых существ – в пробе они все равно будут.
Подобные эквиваленты микроскопической генетической диаспоры вы найдете на Земле практически повсеместно. Представители большинства биологических типов есть везде, даже если те или иные условия им не нравятся. Есть и исключения: недавние исследования показали, что в полярных регионах Земли есть определенные бактерии, которые не встречаются больше нигде ни в каких количествах. Однако при всех оговорках все же можно сказать, что микробиологические популяции распространены в очень большом географическом диапазоне.
И в этом есть смысл. Крошечные организмы легко переносятся по всему земному шару с водой и воздухом, и у них было вдоволь времени, чтобы проникнуть практически в каждый уголок. Однако важно понимать, что мир захватили не просто микробы, а набор генов, где записаны инструкции к молекулярным двигателям обмена веществ. Эта важнейшая группа генетических кодов описывает механизмы, которые, в сущности, сделали мир таким, какой он есть. Фалковски и его соавторы очень удачно назвали это «базовым генетическим набором планеты».
Тот факт, что микробы, которые несут базовый генетический набор планеты, живут повсюду, прекрасно объясняет то, как фундаментальные метаболические процессы сумели остаться неизменными за миллиарды лет. Дело в том, что у них по всей планете хранились резервные копии. Предположим, например, что в Землю врезается шальной астероид диаметром в десять километров с силой, эквивалентной примерно 100 триллионам тонн тринитротолуола. Этакий доморощенный «истребитель динозавров» – примерно как тот, что 65 миллионов лет назад упал на полуостров Юкатан и, вероятно, ускорил их вымирание. Или, скажем, мы заглянем на 570 миллионов лет назад, а может быть, и раньше, и обнаружим, что почти вся Земля покрыта льдом – такие периоды называют «Земля-снежок»[147]. При этом погибнет бесчисленное множество живых организмов, навеки исчезнут целые виды. Однако где-то на Земле всегда останутся бактерии или археи, несущие в себе часть базового генетического набора планеты, а значит, и инструкции для механизмов метаболизма. Микроскопические тельца одноклеточных забиваются во все щелочки и дырочки, живут на океанском дне и даже в капельках воды, составляющих облака. Отдельные микробы живут совсем недолго, но это и неважно: миллионы и триллионы одноклеточных хранят в себе гены веками и тысячелетиями. Причем некоторые виды несут по нескольку базовых генов – и не всегда применяют их для своего собственного обмена веществ.
Можно уподобить эту ситуацию – не слишком поэтически – компьютерной сети. В наши дни, когда скачиваешь электронную книгу или музыкальный файл, или даже фотографируешь что-то на камеру мобильного телефона, на руках у тебя чаще всего остается лишь копия. А другая копия либо остается на твоем компьютере, либо загружается через Интернет в какое-то другое устройство для хранения информации. Но мало того – эти «облачные» копии копируются на разные устройства, зачастую на гигантские системы серверов, расположенные на противоположных концах континента. В этом случае данные не пропадут, разве что случится конец света и мир в нынешнем виде перестанет существовать. Даже если какие-то копии пропадут или испортятся в результате отключения электричества или хакерских атак, это не страшно: где-нибудь найдется дубликат.
Можно сказать, что микробы – такие же носители инструкций по метаболизму, распространяющие их по всей Земле и не дающие пропасть с течением времени, как и компьютерные системы, которые бездумно хранят информацию, которую мы туда помещаем. Насколько надежен этот метод хранения, мы точно не знаем. Легко представить себе, что у него могут быть и недостатки, – ведь за последние 3–4 миллиарда лет наверняка случались и сбои. Однако в целом похоже, что чертежи главных механизмов жизни эта система сохраняет целыми и невредимыми.
144
Разновидности сине-зеленых водорослей использовали солнечный свет для получения пищи еще более чем 3 миллиарда лет назад. Эти организмы, вырабатывающие кислород, и по сей день встречаются на Земле повсеместно.
145
См., например, N. Lane, W.?F. Martin. The Origin of Membrane Bioenergetics // Cell 151 (2012): 1406–16.
146
Бактерии, например, могут обмениваться небольшими поднаборами генетического материала в виде плазмид. Эти плазмиды часто существуют в клетке в виде небольших колец ДНК (независимых от хромосомной ДНК) и содержат генетические коды размером от тысячи до миллиона базовых пар (знаков). Зачем природа придумала такое? Одно из преимуществ микробов состоит в способности делиться ДНК, в которой закодировано сопротивление неблагоприятным факторам вроде антибиотиков. В сущности, распределение плазмид увеличивает шансы на выживание целой популяции, а не только отдельной особи, которой повезло обрести нужную мутацию.
147
Эта идея пока не вполне доказана. Изучение скальных пород показывает, что примерно 650–750 лет назад, возможно, был период глобального похолодания, и тогда, вероятно, было так холодно, что даже на самых низких широтах все было покрыто льдом. То, в какой степени Земля замерзла, почему это произошло и как климат снова потеплел, до сих пор вызывает споры. Доводы в пользу гипотезы «снежка» см., например, в статье P.?F. Hoffman et al. A Neoproterozoic Snowball Earth // Science 281 (1998):1342–46. Планеты, на поверхности которых есть вода, и в самом деле подвержены процессу положительной обратной связи, когда лед отражает больше солнечной энергии, чем жидкая вода, и поэтому температура на поверхности падает еще сильнее. Вероятно, состояния «снежка» среди экзопланет не редкость.
- Предыдущая
- 36/65
- Следующая