Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Ошибка Коперника. Загадка жизни во Вселенной - Шарф Калеб - Страница 35
Некоторые подобные белковые структуры стяжали себе звание двигателей, поскольку вовлечены в основные функции обмена веществ, производства полезной химической энергии и синтез новых соединений – то есть в те самые процессы, которые поддерживают жизнь во всех организмах.
Это снова возвращает нас к школьному курсу химии: а на каком топливе работают эти двигатели? В конечном итоге все сводится к движению и передаче двух фундаментальных физических частиц – электронов и протонов. Химия жизни поддерживается обменом и перетеканием заряженных частиц в ходе реакций окисления и восстановления.
Иногда эти реакции происходят сами по себе, если нужные молекулы сближаются на достаточное расстояние при достаточной энергии. Например, при нагреве метан способен перегореть в кислород. Все мы наблюдали эту реакцию в кухне, когда готовили на газу, и в школе на лабораторных работах, когда зажигали бунзеновские горелки. В результате атомы углерода и водорода связываются с кислородом и в процессе теряют электроны. В сущности, само слово «окисление» несколько устарело: в ходе таких реакций атомы на самом деле теряют или передают электроны. А передача заряженных частиц означает, что создается поток энергии, к которому можно подключиться, чтобы подпитывать другие процессы.
Однако не все реакции идут настолько спонтанно, зачастую им требуется дополнительный толчок. Такова жизнь: ее молекулярные двигатели пристраиваются к реакциям, катализируют их, часть энергии забирают на свои цели поддержания жизни, причем зачастую запасают эту энергию в других молекулах, которые переправляют ее в другие участки клетки или клеток организма. Именно так поддерживается жизнь на Земле. И молекулярные двигатели на самом деле не просто пристраиваются к химическим реакциям, они физически собирают химическое топливо и создают условия для того, чтобы эти реакции шли: они обеспечивают обмен веществ.
Однако здесь таится колоссальный подвох. Все подобные химические реакции, подобные передачи электронов или протонов, превращают набор ингредиентов в набор продуктов. Так что если бы у Земли был ограниченный запас сырья и реактивов и она предоставляла его в распоряжение живых организмов, со временем запас истощился бы. Но ведь планета не статична. Бурная геофизическая активность – от вулканов до тектонических сдвигов – перерабатывает органические осадки и их химические составляющие и возвращает их на поверхность, а реакции в атмосфере с участием солнечного света постоянно производят свежее сырье.
Сложность в том, что эти процессы относительно медленные: на то, чтобы заново заполнить химическую кладовую, уходят миллионы лет. Жизнь зародилась по крайней мере 3,5 миллиарда лет назад и сохранилась с тех пор, значит, у нее был еще какой-то источник средств к существованию, пока Земля тащилась себе вперед. И верно. Именно в этом и состояло озарение, которое постигло меня, когда я читал работу Фалковски, Фенчела и Делонга. В их статье объясняется, как молекулярные двигатели жизни в результате эволюции объединились в поразительную взаимосвязанную систему – систему, при помощи которой микроскопические организмы катализируют множество реакций окисления и восстановления во множестве самодостаточных циклов. Иными словами, молекулярные двигатели перезапускают последовательности повторяющихся химических реакций, которые без них шли бы очень медленно или вообще не состоялись бы.
В результате обмена веществ атомы элементов вроде водорода, углерода, азота, кислорода и серы постоянно переходят из одного места в другое, из молекулы в молекулу. Со временем химическая структура земной коры и океанов оказывается глубочайшим образом переработана – и это превращение не было бы возможно в отсутствие жизни. Это и есть биогеохимия. Практически вся среда нашего обитания на Земле – от кислорода, которым мы дышим, до состава почвы у нас под ногами – всего лишь результат уравновешивания всех этих взаимосвязанных, взаимозависимых циклов. Разумеется, мы не отделены от этой системы. Жизнь, подобная нашей, принадлежит к домену эукариотов с большими сложными клетками, которые, очевидно, представляют собой результат различных случаев эндосимбиоза – ассимиляции всевозможной машинерии из более ранних, чисто симбиотических отношений между одноклеточными организмами. Сложноклеточная жизнь практически исключительно полагается на дыхание, для которого ей нужен кислород, и на всевозможные источники энергии, получаемой из углеродосодержащих молекул. А это значит, наши жадные до кислорода организмы играют важную роль в системе обмена веществ в масштабах планеты.
Эти еще не до конца выявленные самоподдерживающиеся циклы – важнейшая веха на нашем пути не только к пониманию того, как связана любая жизнь с химической и физической тканью Вселенной, но и к попытке найти свое место в более широком контексте. Число обменных процессов, по крайней мере сегодня на Земле, конечно. В принципе, это могли бы быть и другие разновидности химических реакций, однако миллиарды лет эволюции на Земле пришли в конце концов именно к конкретному, нашему набору реакций.
Эти метаболические рецепты можно уподобить различным комбинациям молекулярного «топлива»[141] с молекулярными окислителями, которые «сжигают» это топливо. Лучше всего мы знакомы с метаболическими последовательностями, в которых происходят процессы вроде кислородного дыхания, ферментации, усвоения азота, фотосинтеза с выработкой кислорода и без. Есть и более экзотические – сульфатное, нитратное, нитритное и даже железистое и марганцевое дыхание. На каждом из возможных метаболических вариантов, а иногда на нескольких сразу специализируются свои бактерии и археи. Например, молекулярные двигатели в определенных типах архей могут сочетать углекислый газ (окислитель) с молекулярным водородом (топливо) и вырабатывать метан и воду. Еще они могут разделять молекулы уксусной кислоты и делать из них метан и углекислый газ. Львиная доля метана, доступная нам, людям, и, скажем откровенно, вырабатываемая нами, людьми, и многими другими животными, производится трудолюбивыми крошками-археями. Эта разновидность обменных процессов называется метаногенез[142].
Главную роль в биосфере Земли играют реакции с усвоением углерода – превращение простых неорганических источников углерода, например, углекислого газа, в органические соединения, – поскольку углеродосодержащие молекулы составляют основу жизни на Земле. В общем и целом мы обнаружили 10 фундаментальных химических процессов, которые, по нашему мнению, отражают метаболический профиль жизни на Земле. Это сумма всех способов, которыми все организмы получают электрическую энергию и сырье. А вот то, как именно эти процессы связываются в единую систему циклов, общих для всех биологических видов на всей планете[143] – настоящее чудо. Например, молекулярные двигатели, при помощи которых некоторые археи производят метан, у других архей и бактерий работают в обратную сторону. Они добывают энергию, разбирая молекулы метана и превращая их обратно в углекислый газ и водород. Кому отходы, а кому и пища.
Точно так же можно обратить и большинство остальных процессов. Если не найдется вида бактерий, который располагает машинерией, позволяющей прямо и непосредственно ликвидировать результат деятельности какого-то другого вида, значит, этот обратный процесс будет выполнен постепенно, в результате цепочки взаимодействий, которая охватывает сразу много разных видов. Организмам-участникам не обязательно даже жить бок о бок в пространстве или времени. Метан, вырабатываемый где-то на планете одним коллективом организмов, найдет себе потребителей совсем в другом месте и в другое время года.
Все это подозрительно похоже на вечный двигатель, где один организм обеспечивает пищей другого, а тот преобразует ее снова, и при этом постоянно выделяется энергия. Это и был бы вечный двигатель, если бы обмен веществ в масштабах планеты представлял собой замкнутую систему, а это не так. В конечном итоге его обеспечивают два источника энергии, которые я уже упомянул. Во-первых, Земля еще не остыла внутри – это последствия бурных времен ее формирования, а также результат того, что в ее состав входят радиоактивные вещества, – и на ее поверхность выходит примерно 30–45 триллионов ватт геотермической и геохимической мощности. Во-вторых, ее поверхность впитывает энергию Солнца – примерно 90?000 ватт. Этот приток энергии вполне покрывает любые потери из-за пробелов во взаимозависимых метаболических циклах в живой природе.
141
Хороший обзор энергетического бюджета живых организмов на примере сгорания «топлива» см. в статье K.?H. Nealson and P.?G. Conrad. Life: Past, Present, and Future // Philosophical Transactions of the Royal Society B // Biological Sciences 354 (1999). 1923–39.
142
Кажется, будто процесс выработки метана микробами довольно прост, однако на самом деле, как и большинство метаболических процессов, он задействует безумное количество ферментов и реакций, причем не всегда одинаковых. В сущности, к получению метана приводит три основных метаболических маршрута: восстановление углекислого газа (о нем здесь и идет речь), ферментация соли уксусной кислоты и дисмутация (одновременное окисление и восстановление, в результате которых получаются два вещества) метанола или метиламинов. Каждый из них предполагает множество этапов-реакций.
143
Примеров тому множество. Не так давно было открыто одно особенно удивительное сочетание химических реакций окисления-восстановления, которые идут в разных слоях осадков на морском дне, – расстояние между ними составляет целых 12 миллиметров, для бактерий это очень много. Вероятно, механизм, связывающий эти физические слои, – электрический: возможно, именно бактерии контролируют поток заряженных частиц по планете. L.?P. Nielsen et al. Electric Currents Couple Spatially Separated Biogeochemical Processes in Marine Sediment // Nature 463 (2010): 1071–74.
- Предыдущая
- 35/65
- Следующая