Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Ошибка Коперника. Загадка жизни во Вселенной - Шарф Калеб - Страница 27
Рис. 9. Наглядная иллюстрация того, как стремительно возрастает сложность системы из тел, вовлеченных в гравитационное взаимодействие. Вверху слева изображены два тела, которые притягивают друг друга и вращаются по орбитам. Ситуация стабильна и поддается расчетам. Однако если тел уже три (вверху справа), требуются 3 набора координат в трехмерном пространстве, 3 трехмерных вектора скорости и 6 трехмерных векторов силы. Четыре тела (внизу) – 4 набора координат, четыре вектора скорости и 12 векторов силы, и все трехмерное, и все действует одновременно. Неудивительно, что Ньютон оставил попытки искать алгебраическое решение этой задачи.
Главный недостаток этих методов состоял в том, что они не позволяли отслеживать каждый момент в движении системы, а, в сущности, вычисляли средние значения сил, с которыми планеты притягивают друг друга и нарушают орбиты друг друга от оборота к обороту. Это очень хитроумные методы, ими и сегодня пользуются, чтобы получить ответы на вопросы о поведении планетных систем в целом, особенно для краткосрочных прогнозов. В свое время эти методы считались также доказательством детерминистической природы гравитационных систем, которые виделись частью «заводной Вселенной», приводимой в движение законами Ньютона.
Однако, несмотря на внешний лоск, это всего-навсего приближенные вычисления, гениальные математические фокусы, которые дают ответы на некоторые вопросы, но не на все. И к концу XIX века становилось все яснее, что нельзя ни пренебрегать всеми силами, которые участвуют в формировании траектории планеты в будущем, ни упрощать их.
Так что не приходится удивляться, что уже ставший знаменитым Пуанкаре увидел объявление о конкурсе короля Оскара[117] и с радостью принялся за самую первую задачу, поскольку если бы он решил ее, то навсегда вошел бы в учебники истории. И довольно быстро достиг существенных успехов. Пуанкаре считал, что нашел математическое доказательство того, что можно определить стабильность гравитационной системы из трех тел. А главное, он претендовал на то, что способен рассчитать их движение с произвольной точностью. Казалось бы, что может быть прекраснее, и хотя задача была решена лишь для трех тел, этого хватило, чтобы произвести впечатление на жюри, так что приз оказался у Пуанкаре в кармане.
Но тут-то и начались осложнения. Победоносная статья, как и было обещано, открывала сборник «Acta Mathematica». Однако при редактировании статьи Пуанкаре начал понимать, что кое-что упустил – сделал чудовищную ошибку. Его решение задачи трех тел было неверным, не позволяло получить верный результат, и он был вынужден сообщить об этом редакции журнала. Пуанкаре упустил из виду один частный случай геометрического поведения математических функций, на которых строилось его доказательство.
К сожалению, к тому моменту, когда он сообщил об этом издателям, статья уже была напечатана и разослана по всему миру. Чтобы предотвратить катастрофу, все экземпляры отозвали, а Пуанкаре был вынужден оплатить убытки, счет за которые существенно превышал щедрый приз, совсем недавно полученный от короля Оскара. Бедняга Пуанкаре. Нечасто математические ошибки обходятся так дорого[118].
Однако в этой бочке дегтя была и ложка меда, хотя к банковскому счету Пуанкаре это не относилось. Когда он пришел в себя после такого унижения и сделал работу над ошибками, проделанный им анализ оказал заметное влияние на дальнейшее развитие математики. Пуанкаре доказал, что прямого ответа на гравитационную задачу n тел получить невозможно. Выражаясь языком математики, не существует аналитически интегрируемого решения общей задачи о движении трех тел, вовлеченных в гравитационное взаимодействие, а следовательно, то же верно и для любого числа тел больше трех.
Согласно Пуанкаре, если у тебя есть звезда, вокруг которой по орбитам вращаются две планеты, нет никакого способа точно рассчитать поведение этой системы в будущем (и прошлом) при помощи пера и бумаги. Если планет больше двух – то есть мы имеем дело с произвольной системой из n тел – задача становится еще более безнадежной. Исключений совсем немного, и это весьма затейливые частные случаи, когда, например, третье тело очень мало и его гравитационным воздействием можно пренебречь.
Это было смелое заявление, и новый математический подход Пуанкаре намекал на ту сторону существования Вселенной, которую мы только-только начали замечать под плотными покровами классической физики, а полностью обнажили лишь в следующем, ХХ столетии. Это свойство мироздания называется хаосом, и к нему я скоро вернусь.
Как выяснилось, когда Пуанкаре доказал, что задача n тел не имеет решения, то сделал огромный шаг вперед на пути прогресса науки, однако ученым еще предстояло обнаружить, что здесь таятся и вовсе диковинные подробности. Подобраться к сути задачи было отнюдь не просто, и прошло почти сто лет, прежде чем результат удалось уточнить. В 1990 годы[119] очень красивая работа китайского математика по имени Кидон (Дон) Ван показала, что задача n тел на самом деле может быть решена алгебраическими методами. Однако с одной оговоркой – правда, очень серьезной: для этого нужно было найти сумму ряда из нескольких миллионов членов. Иначе говоря, на самом деле можно написать алгебраическую формулу, которая расскажет все о поведении n тел, однако на это уйдет вечность. К тому же, пока все сложишь, придется сделать столько округлений, что накопившаяся погрешность лишит ответ всякого смысла.
Тайная природа планетных систем, которая со времен Пуанкаре стала гораздо более явной, дает нам очень важную подсказку. Уравнения, которые описывают движения планет, не способны учесть и проконтролировать крошечные неопределенности в вычислениях, мелкие погрешности, которые впоследствии, накопившись, подрывают нашу способность что-либо спрогнозировать. Сама природа полна отклонений, и переплетение взаимодействий в планетной системе делает ее крайне чувствительной к подобным переменам. Микроскопическая пылинка там и сям способна в самом буквальном смысле слова повлиять на движение светил – дайте только срок.
Чувствительность системы и уравнений, которые ее описывают, – фундаментальное свойство природы. Ее часто называют нелинейностью[120], поскольку между любыми переменами в системе и тем, как она на них реагирует, нет простого однозначного соответствия. Это примерно как осторожно тыкать палкой огромного пса: легкий толчок может вызвать как миролюбивое тявканье, так и вполне справедливую ярость – ответ нелинеен. А нелинейные системы занимают в мироздании особое место, поскольку способны реагировать хаотично.
Строго говоря, это не хаос чертей и демонов, не отказ от любого порядка и причинности, а хаос математический, хаос, который не всегда приводит к беспорядку и разрушению (все зависит от мельчайших подробностей). Суть его – непредсказуемость, невозможность выяснить, что таит будущее. Так что та или иная пылинка, то или иное отклонение в структуре планеты или то или иное изменение ее положения на орбите не просто способны привести к радикальным переменам в будущем – эти перемены не всегда можно предсказать. Это относится и ко многим другим сложным системам. Нелинейность относится и к климату и погоде на Земле, и к капризам экономики и фондового рынка. Неопределенность встроена во Вселенную на самом глубинном уровне. Подобного типа хаос вполне может быть укоренен и в планетных системах, и факт остается фактом: любые планетные системы потенциально способны быть хаотическими. Это двойной удар по задаче n тел и по определению орбитальных траекторий на долгий период времени: невозможно решить уравнения движения на практике, вручную, и даже если бы мы могли это сделать, система в любой момент способна впасть в непредсказуемое хаотическое состояние. Такова неприятная правда, которую Пуанкаре имел сомнительное счастье обнаружить.
117
Об истории и хронологии трудов Пуанкаре написана прекрасная лаконичная статья с богатейшим списком источников: Q. Wang. On the Homoclinic Tangles of Henri Poincare // http://math.arizona.edu/~dwang/history/Kings-problem.pdf.
118
Призовой фонд составлял 2500 крон, а на то, чтобы перепечатать тираж «Acta Mathematica», нужно было 3500 крон. Для сравнения, среднее жалованье члена Шведской академии наук составляло примерно 7000 крон в год.
119
Отличная статья о новейшей истории гравитационной задачи n тел – F. Diacu. The Solution of the n-body Problem // The Mathematical Intelligencer 18 (1995): 6670
120
Если вас интересует богатая и многогранная тема хаоса и нелинейности, рекомендую великолепную книгу: James Gleick. Chaos: Making a New Science. New York: Viking Penguin, 1987; rev. ed., Penguin Books, 2008).
- Предыдущая
- 27/65
- Следующая