Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Ошибка Коперника. Загадка жизни во Вселенной - Шарф Калеб - Страница 26
Но если бы в этой гипотетической Вселенной обнаружилась вторая планета, все бы разом изменилось. Была бы и она обитаемой, неважно, – само ее существование дало бы нам возможность делать математические утверждения о вероятности зарождения жизни на планетах, а также оценить вероятность нашего собственного появления. Если бы планет было еще больше, это улучшило бы ситуацию, поскольку каждый следующий ответ «да» или «нет» помогал бы нам определить, с какой частотой возникает жизнь на любой планете.
Итак, налицо неочевидное обстоятельство[113]. Мы уже знаем, что живем во Вселенной, где планет великое множество. Из этого следует, что мы живем во Вселенной, где в принципе можно получить ответ на вопрос о вероятности зарождения жизни, о шансах на абиогенез в каком-нибудь подходящем мире, – при условии, что у нас будет вдоволь времени и технологических умений.
То, что космос должен быть именно таким, – вовсе не данность. Планет могло быть очень мало – и мы все равно существовали бы на одинокой Земле и задавались бы тем же вопросом, просто так и остались бы навеки без ответа. А открытие такого количества планет возвращает нас к идее, о которой я писал в самом начале книги, – к антропному принципу. Возможно, читатель отметит, что Вселенная не просто настроена так, что жизнь может возникнуть в ней по крайней мере однажды, – похоже, она настроена так, чтобы жизнь заинтересовалась своим происхождением и вероятностью абиогенеза.
Мы не знаем в точности, какие из этого можно сделать выводы, по крайней мере, пока. Но это очень интересно – тут сомневаться не приходится; и еще нам определенно нужно будет пересмотреть свои воззрения по мере того как мы углубимся в дальнейшие исследования, не только в пространстве, но и во времени.
Чтобы примириться с идеей Вселенной, полной планет, нам пришлось выйти далеко за пределы привычных рамок. Мы были вынуждены пересмотреть самые разные древние фантазии о неведомых мирах. Как я уже показал, нам пришлось исправлять собственные ошибки, перестать считать, что наша Солнечная система – характерный представитель себе подобных.
Если бы обнаружить даже самые близкие экзопланеты не было так технически сложно, мы бы добрались до этого этапа гораздо раньше, а так при попытках приглядеться к этим тусклым искоркам вокруг сияющих звезд нас ждет множество неожиданностей. Казалось бы, изобилие планет подтверждает наши коперниковские идеи, однако их разнообразие сильно смазывает картину. Судя по некоторым признакам, мы обитаем в несколько необычном месте, и в этом таится намек на то, что нам нужно расширить понятие тонкой настройки Вселенной. Однако на этом история не кончается. Дело в том, что лига выдающихся планет отражает лишь сиюминутный срез истории наших космических соседок. Когда мы сравниваем их с нашей Солнечной системой, то основываемся зачастую на простом наборе параметров, зафиксированных во времени. Между тем сегодняшние условия отражают лишь миг в истории, насчитывающей 4,5 миллиарда лет прошлого и 5 миллиардов лет будущего нашего Солнца и его планет. Так есть ли смысл основывать все свои выводы на таких узких представлениях? Был бы, если бы системы планет были как заводные – бессмертные, неизменные и предсказуемые. Но ведь это не так. Поэтому в следующей главе я открою одну грязную тайну небесной механики, которую тщательнее всего хранят, поскольку она объясняет, почему мы в своем уравнении значимости должны обязательно учитывать ход времени и вероятность перемен.
Великое заблуждение
Cтоял 1889 год, Анри Пуанкаре[114] сравнялось тридцать четыре года, и он был в расцвете творческих сил. Молодой муж и отец, подающий надежды преподаватель в Парижском университете, недавно избранный в престижную Французскую Академию наук, он всего несколько месяцев назад выдвинул гипотезу, которая произвела фурор на торжественном конкурсе: судя по всему, Пуанкаре дал ответ на одну из самых наболевших и трудных задач во всей математической физике. Все в жизни складывалось лучше некуда.
Нам это может показаться немного странным (хотя эта традиция при подходе к самым знаменитым задачам еще сохранилась), однако в конце XIX века нерешенные математические задачи частенько выставляли на конкурсы. Однако здесь был особый случай: патронировал конкурс его величество Оскар II, король Норвегии и Швеции. Мало того, что король Оскар II изучал математику в Упсале, он еще и сохранил тесные связи с академическим миром. Особенно он интересовался недавно основанным журналом «Acta Mathematica»[115], который печатался в Стокгольмском университете (тогда он еще назывался Стокгольмским колледжем). Так что долго ждать не пришлось: кому-то пришла в голову блестящая идея объявить конкурс, которому покровительствовал сам король и результаты которого предстояло опубликовать в этом журнале. О конкурсе объявили в 1885 году и выбрали жюри, состоявшее из самых блестящих математиков Европы и Америки. Участники состязаний должны были дать ответы на четыре знаменитые математические задачи по выбору жюри, однако могли выдвинуть и собственную тему. Эффектным завершающим штрихом было то, что итоги конкурса и вручение призов в начале 1889 года были приурочены к шестидесятилетию Оскара II.
Первый вопрос, с которого начинался список, славился издавна. Называлась задача просто – «Гравитационная задача n тел»[116]. У этой задачи богатая история: она была сформулирована еще в конце XVII века, когда Исаак Ньютон опубликовал законы движения и тяготения. Законы Ньютона прекрасно объясняли форму планетных орбит, и на первый взгляд казалось, будто с их помощью можно рассчитать движение любого набора тел, вовлеченных в гравитационное взаимодействие – и трех тел, и четырех, и произвольного числа n. Ведь все тела притягивают друг друга с силой, которую легко вывести из закона всемирного тяготения Ньютона. Знаешь начальные условия – следовательно, имеешь возможность выполнить все подсчеты с какой угодно точностью.
Рассчитать движение двух тел, например, Солнца и какой-нибудь одной планеты, было относительно просто, однако Ньютон быстро понял, что если имеешь дело с более сложной системой, получается совсем другая история. Как видно, великого Исаака очень сердило, что он не может найти способ решить уравнения, и он писал: «Если не ошибаюсь, рассмотреть все случаи движения одновременно и определить их по точным законам и при помощи простых вычислений – задача, которая превосходит возможности человеческого разума».
Ньютон был, как, впрочем, и всегда, совершенно прав. Да, ни несколько строчек алгебраических выкладок, ни даже интегральное исчисление не дают математической кривой, которая описывала бы гравитационное взаимодействие n тел. Как и утверждал великий ученый, задача n тел оставалась нерешенной – к вящей досаде физиков и математиков. Нужно было качественное математическое доказательство его слов – а может быть (все может быть), просто несколько более хитроумный подход к решению.
По правде говоря, за время, прошедшее между Ньютоном и Пуанкаре, был достигнут заметный прогресс и найдены довольно точные способы приближенного расчета орбитального движения планет. К концу XVIII века ученые Пьер-Симон Лаплас и Жозеф-Луи Лагранж разработали по набору математических инструментов, способных как минимум предсказать общую картину движения в системе из множества планет за тысячи, а может быть, и миллионы лет. Отчасти секрет был в сугубо технических методах решения. И Лаплас, и Лагранж понимали, что орбиты в системе из множества тел «квазипериодичны»: влияние одних планет на другие означает, что каждая из них будет описывать полные круги по орбите за не совсем одинаковые промежутки времени. И при помощи определенных математических трюков можно опереться на это качество и предсказать общие тенденции в орбитальном движении в системе.
113
Об этом я подробнее писал в Интернет-журнале Aeon Magazine от 20 июня 2013 года: C. Scharf, «Are We Alone? // http://aeon.co/magazine/nature-and-cosmos/the-real-meaning-of-the-exoplanet-revolution/.
114
Анри Пуанкаре (1854–1912) был не просто математик, он добивался блестящих результатов практически во всем, за что брался, в том числе в физике и в инженерном деле. Большинство источников отмечают, что он был склонен работать быстро и не очень любил вносить изменения и исправления в уже сделанное.
115
Этот журнал процветает до сих пор, его издает Институт Миттаг-Леффлер (названный в честь супругов Густава и Сигне Миттаг-Леффлер) при Шведской королевской академии наук.
116
Эта знаменитая задача математической физики упоминается в исследовательской литературе сплошь и рядом. Существует множество точных (и очень затейливых) решений для сугубо частных случаев, см., например, Cristopher Moore. Braids in Classical Dynamics // Physical Review Letters 70 (1993): 3675–79, а также чудесные анимационные ролики на сайте http://tuvalu.santafe.edu/~moore/gallery.html.
- Предыдущая
- 26/65
- Следующая