Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
В погоне за красотой - Смилга Вольдемар Петрович - Страница 21
Вообще по характеру, темпераменту, взглядам, по многим жизненным обстоятельствам Хаййам поразительно напоминает Галилея.
Как будто двое близких родственников жили на разных краях мира с интервалом в 500 лет.
Я не буду особо обосновывать эту параллель. Каждый может сам решать, так ли это. Но, по-моему, они близки, близки во всем. И, следуя Киплингу, кончим той фразой, с которой мы начали.
Восток, как известно, есть Восток.
В отличие от Запада, который есть Запад…
Глава 6
Эпоха доказательств. Продолжение
Их было много. Очень много. Не меньше тысячи.
Так или иначе, раньше или позже судьба сталкивала их с пятым постулатом, и они погружались в манящий лабиринт теорем.
Выхода не находил никто.
Иные запутывались в самом начале, иные проходили дальше, но итог был неизменно постоянен.
Некоторые отдавали этой безнадежной задаче всю жизнь, другие вовремя отступали.
Иные доходили до нервного потрясения, мистицизма и отчаяния, иные же философски спокойно бросали в корзину листки своих выкладок. Но итог был неизменен.
Некоторым улыбался мираж, и они пребывали в счастливой уверенности, что выбрались наружу. Но итог оставался неизменен.
Они повторяли пути предшественников, не зная, что идут уже проверенным и отброшенным путем, часто им светила надежда, и казалось, что нужно лишь одно решительное усилие. Но итог всегда бывал один.
Дилетанты, профессионалы, наивные посредственности и талантливейшие математики; греки, арабы, персы, европейцы — те, кто запутывался на первых шагах, и те, кто сражался долго, упорно и изобретательно — более двух тысяч лет, — всех их ждал один конец.
Пятый постулат был неприступен. Он относился, казалось, к тем задачам, что никогда не будут решены при помощи человеческого ума.
Но раз уж мы пленились возвышенным стилем, то можно сказать, что математики точно следовали девизу, высеченному на могиле капитана Скотта:
И подобно бескрайним снегам, пятый постулат поглощал одного за другим.
Большинство не оставили после себя каких-либо следов. Они исчезли бесследно. Но некоторые гибли достойно, оставив по себе добрую память.
На кладбище жертв «пятого» одно из самых почетных мест по праву принадлежит Анри Лежандру.
Лежандр был, возможно, наиболее крупным математиком среди тех, кто попал под гипноз пятого постулата. Он занимался им долгие годы, подступал к чудовищу то с одной, то с другой стороны. Находил и опровергал, предлагал одно доказательство за другим, переходил от уверенности в успехе к полному разочарованию, снова надеялся на удачу, но под конец все же сам заключил, что точного решения не найдено. Признание содержится уже в самом названии резюмирующей работы, опубликованной им в последние годы жизни (1833 г.), «Размышления о различных способах доказательства теории параллельных линий или теоремы о сумме углов треугольника».
Как часто бывает в науке, это осторожное, обширное и в итоге пессимистическое исследование появилось тогда, когда уже было найдено решение и в «Вестнике Казанского университета» была напечатана первая работа Лобачевского.
Впрочем, тут удивляться не приходится. Но вот то, что ровно через двадцать лет наш русский академик В. Я. Буняковский, который, уж во всяком случае, обязан был знать работы Лобачевского, опубликовал аналогичное исследование, — это грустный факт. Еще раз обращаю ваше внимание на поразительный, почти анекдотический характер этого события. Впрочем, разговор о нем еще впереди.
В своих многолетних попытках доказать пятый постулат Лежандр проявил и настойчивость и замечательную изобретательность.
Во-первых, он очень изящно доказал несколько теорем «абсолютной геометрии». Во-вторых, доказывая «пятый» от противного, он, по существу, нашел ряд теорем геометрии Лобачевского. Доказывал он не непосредственно «пятый», а его эквивалент — «сумма углов треугольника равна π».
Прежде всего он доказывает эквивалентность.
Уже по нашей доморощенной теореме, когда на эквивалентность с «пятым» исследовался постулат: «перпендикуляр и наклонная пересекаются», можно было почувствовать, как тесно связан «пятый» с теоремой о сумме углов треугольника.
Но, конечно, доказательства эквивалентности этой теоремы и пятого постулата мы не дали.
Полное доказательство эквивалентности любых двух утверждений содержит две части.
1. Доказывается: «Если принять утверждение A, то из него следует утверждение B».
2. Доказывается обратная теорема: «Если принять утверждение B, то из него вытекает утверждение A».
В нашем случае надо доказать:
Если справедлив «пятый» — сумма углов треугольника равна π.
Эта первая часть доказательства — известная теорема и приводится во всех школьных учебниках геометрии. Вторую половину задачи решает Лежандр, и решает безукоризненно. Посмотрим, как он действовал. Во-первых, он доказывает:
1. Сумма углов треугольника не может быть больше π.
Доказывает безукоризненно строго. Конечно, не используя пятого постулата. И даже дает два варианта доказательства. Оба правильные. Метод доказательства — испытанное оружие «reductio ad absurdum». Предполагается, что существует треугольник, сумма углов которого равна (π + α), и показывается, что в этом случае мы непременно придем к противоречию. Доказательства довольно просты.
Я не повторяю их потому, что для любителей геометрии весьма привлекательно получить этот результат самостоятельно.
Далее идут несколько вспомогательных теорем, и он доказывает очень важное утверждение:
2. Если сумма углов в каком-либо одном треугольнике равна π, то она равна и во всяком другом треугольнике.
Все доказывается без привлечения пятого постулата. Средствами абсолютной геометрии.
Теперь все подготовлено для последней теоремы этого цикла — доказательства эквивалентности:
3. Если сумма углов треугольника равна π, справедлив постулат Евклида. Вообще говоря, если принять первые два утверждения, то эквивалентность сразу можно доказать с помощью «нашей» теоремы. Предоставляю читателям самостоятельно проверить это утверждение. Кстати, можно признаться, что примерно так и доказывал Лежандр. Остается получить только одно:
4. Сумма углов треугольника не может быть меньше π.
Только это! И пятый постулат доказан.
И Лежандр решает эту задачу.
Доказательство Лежандра великолепно.
Оно изящно. Просто. Неожиданно.
В нем есть все, что восхищает нас в математике. Кроме одного.
Оно неверно.
Но внимания оно заслуживает.
Метод — снова доказательство от противного. Перед нами Δ ABC. С него мы начинаем. Он главный. И сумма его углов по предположению равна (π – α).
Стороны угла A мы продолжим до бесконечности. Это понадобится в дальнейшем.
Теперь — вспомогательное построение.
На стороне BC строим еще один точно такой же треугольник. Он виден на чертеже — это Δ BCD.
Построили мы его так, что сторона BD = AC, а сторона CD = AB. Легко убедиться, что сделать это всегда возможно. И теория параллельных пока никак не вмешивается в наши рассуждения. Теперь из точки D проведем какую-либо прямую. К ней предъявляется единственное требование. Она должна пересечь обе стороны угла А. Вроде бы очевидно, что можно найти не одну, а много прямых, удовлетворяющих этому условию.
- Предыдущая
- 21/57
- Следующая