Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Открытие без границ. Бесконечность в математике - Грасиан Энрике - Страница 8


8
Изменить размер шрифта:

Во-первых, обратите внимание, что слово «бесконечность» допускает две трактовки: как нечто бесконечно протяжённое и как нечто бесконечно делимое. В первом парадоксе смешиваются обе трактовки, так как согласно ему ограниченное пространство, которое делится на бесконечное множество частей, не может быть пройдено за конечное время. Проводится следующее различие: в непрерывном пространстве, в котором движется тело, существует бесконечное число половин расстояний, но потенциально, а не в действительности. В этом заключается важность вклада Аристотеля, так как начиная с этого момента возникли две различные трактовки бесконечности, в определённом смысле несовместимые: так называемая потенциальная и актуальная бесконечность, о которых мы говорили в предыдущей главе.

Мы очень часто определяем, что верно, а что нет, руководствуясь здравым смыслом, основанным на чувствах, которые, говоря языком современных технологий, можно определить как средства фиксации и обработки окружающей нас реальности.

Нечто является разумным в той степени, в которой на это указывают наши ощущения. Сколь парадоксальным ни казался бы нам полёт стрелы, органы чувств ясно указывают, что стрела отдаляется от нас. Разумеется, Зенону это было прекрасно известно, но ему также было известно, что чувства не всегда могут служить надёжной опорой разуму.

Он рассуждал так: подобно тому, как у вещи либо есть размеры, либо нет, предмет издаёт или не издаёт звук. Корзина, полная зёрен пшеницы, издаёт определённый звук, когда мы тянем её по земле. Зенон задавался вопросом: издаёт ли звук одно-единственное зерно? Если да, то издаёт ли звук половина зерна? Как можно предположить, если и далее последовательно делить зерно на части, наступит момент, когда этот звук будет неразличим. Исходя из этого факта, можно утверждать, что сумма элементов, равных нулю, всегда будет нулевой, то есть если мы соберём вместе множество предметов, не издающих звук, то и их совокупность также не будет издавать звуков.

Целью Зенона было показать, что в определённых рассуждениях мы не можем доверять нашим органам чувств — они должны уступить место интуиции, что часто и происходит при математических рассуждениях. Однако, как вы увидите далее на примере теорий Кантора, интуиция также может быть обманчивой, и мы не можем руководствоваться ею тогда, когда бесконечность является реальным объектом, с которым можно работать так же, как с натуральными числами.

Зенон считал, что нечто может состоять из бесконечного числа элементарных частей только тогда, когда каждая из этих частей не имеет размера: в противном случае эти части можно разделить, и они не могут считаться элементарными. Однако если части объекта не имеют размеров, то не имеет размеров и сам объект, так как сумма величин, не имеющих размера, также не может иметь размер.

Так греки определили термин «апейрон», который пришёл на смену понятию «бесконечность». Апейрон означал отсутствие чётко определённого предела. Это соответствовало идее, согласно которой предмет бесконечен, поскольку может иметь сколь угодно большие размеры. Апейрон не относился, например, к бесконечному числовому ряду, в котором не существует последнего числа. Аналогичным образом определялись бесконечно малые величины, которые могут иметь сколь угодно малые размеры. Этому понятию было дано строгое определение в математическом анализе лишь в XIX веке.

Квадратура круга

Задачам на построение с помощью циркуля и линейки, известным с античных времён, в Древней Греции уделялось большое внимание. Разнообразие этих задач очень велико — они могут быть очень простыми, очень сложными, а порой и вовсе не имеющими решения. Наиболее известны из них задачи о трисекции угла, удвоении куба и квадратуре круга — сложность последней вошла в поговорку.

Когда речь идёт о построениях с помощью циркуля и линейки, следует придерживаться определённых правил, так как в противном случае задачи становятся тривиальными. Например, найти середину отрезка с помощью линейки, на которую нанесены миллиметровые деления, очень просто — для этого даже не потребуется циркуль. Но определим, что мы будем понимать под «линейкой» при решении этих задач. Линейка — это идеальный предмет с абсолютно ровной границей, который служит для проведения прямых. На ней отсутствуют какие-либо отметки, позволяющие измерить расстояние. Циркуль представляет собой обычный циркуль, раствор которого может быть любым. Логично, что его нельзя использовать для нанесения меток, с помощью которых можно измерить расстояние.

* * *

ЦИРКУЛЬ МАСКЕРОНИ

Задачи на построение с помощью циркуля и линейки всегда занимали почётное место среди занимательных задач. Одна из наиболее любопытных публикаций на эту тему принадлежит землемеру Уильяму Лейбурну, который в 1694 году опубликовал книгу Pleasure with Profit («Приятное с полезным»), где описал всевозможные математические «игры с линейкой и вилами» (под вилами имелся в виду циркуль с фиксированным раствором). Одно из величайших открытий, связанных с задачами такого типа, было совершено в 1794 году, когда итальянский геометр Лоренцо Маскерони в своей работе Geometria del Compasso доказал, что любое построение, которое можно совершить с помощью циркуля и линейки, также можно выполнить с помощью только циркуля (разумеется, раствор которого не фиксирован). Так как провести прямую с помощью циркуля невозможно, Маскерони считал, что она определяется двумя точками, заданными пересечением дуг.

* * *

Определив правила игры, можно приступить к решению задач. Рассмотрим, например, как можно провести перпендикуляр к отрезку в его середине. Допустим, дан отрезок АВ. Сначала нужно провести окружность с центром в точке А и радиусом АВ. Далее нужно построить другую окружность такого же радиуса, но с центром в точке В. Прямая, соединяющая точки пересечения окружностей, и будет требуемым перпендикуляром.

Следует предостеречь читателя от бесплодных попыток решить задачу о квадратуре круга: в 1882 году немецкий математик Фердинанд Линдеман (1852–1939) доказал, что число π является трансцендентным, поэтому эта задача не имеет решения.

Доказано, что с помощью циркуля и линейки можно построить правильный многоугольник с произвольным числом сторон, площадь которого будет равна площади данного квадрата. Хотя существование решения этой задачи доказано теоретически, найти его не всегда просто. Использовав это доказательство, Антифонт из Афин (ок. 480–411 гг. до н. э.) изложил метод решения задачи о квадратуре круга, логику которого сложно оспорить. Его суть заключалась в следующем: будем исходить из того факта, что можно построить квадрат, площадь которого будет равна площадям ряда правильных многоугольников, которые мы построим. Впишем в данную окружность шестиугольник.

Нам известно, что задача о квадратуре шестиугольника имеет решение, то есть мы можем построить с помощью циркуля и линейки такой квадрат, площадь которого будет равна площади заданного шестиугольника. Будем увеличивать число сторон многоугольника, вписанного в окружность, и для каждого из этих многоугольников задача о квадратуре по-прежнему будет иметь решение. Разница между площадью окружности и площадью вписанного многоугольника будет последовательно уменьшаться. По сути, она может быть сколь угодно малой. Представим себе, например, многоугольник, число сторон которого равняется нескольким квадриллионам.

Любая из его сторон будет очень близка к дуге окружности, так что их будет очень и очень сложно отличить. Антифонт считал, что таким способом можно решить задачу о квадратуре круга.