Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Естествознание. Базовый уровень. 10 класс - Сивоглазов Владислав Иванович - Страница 26
Рис. 55. Траектория движения точки оси и обода колеса при его качении
Для этой цели нужно воспользоваться другими часами, например песочными. Также можно считать свой пульс, как это делал Галилей, или просто довериться внутреннему ощущению времени, о котором мы говорили в предыдущей главе. В любом случае мы знаем, что время проходит, правильнее сказать, длится. И по мере того как оно длится, стрелки на циферблате часов меняют своё положение от 1 до 12, снова от 1 до 12 и так всё время, пока мы будем наблюдать. Но если часы имеют три стрелки – часовую, минутную и секундную, то они будут возвращаться в исходное положение, скажем, к цифре 1, через неодинаковое время. Секундной стрелке для этого понадобится 60 с, минутной – час, т. е. 3600 с, а часовой – 12 ч, т. е. 43 200 с. Это означает, что разные стрелки имеют различные периоды обращения, которые равны соответственно минуте, часу и 12 часам. Такое движение называют периодическим, и мы его уже обсуждали в предыдущем параграфе. По завершении цикла – полного оборота стрелки – она возвращается в исходное положение, и всё начинается сначала. Но это начало будет началом только с точки зрения этой стрелки, а с точки зрения других – процесс будет продолжаться. Если у нас есть часы с разными стрелками, мы можем не пользоваться для отсчёта никакими другими часами, а просто построить график, отложив по оси х показания минутной стрелки, а по оси у – секундной. Ровно через минуту секундная стрелка вернётся в исходное положение и начнёт отсчёт сначала, а минутная сдвинется только на одно деление и будет отсчитывать всё новые отрезки времени. Посмотрев на график, мы увидим, что на нём изображена периодическая функция. Через равные отрезки на оси х, соответствующие минуте, точка будет иметь одинаковые значения, если отсчитывать их по оси х. Мы получили периодическое движение с периодом, составляющим 1 мин.
Под периодическими процессами понимают такие изменения в системах, когда их положение или состояние через определённый промежуток времени возвращается к тому, которое уже имело место раньше. Самым наглядным периодическим процессом служит движение Земли вокруг своей оси и вокруг Солнца. С интервалом в 24 ч Солнце появляется над горизонтом, проходит через зенит и исчезает за другой точкой горизонта. С интервалом приблизительно в 365 дней меняется температура воздуха, распускаются и опадают листья, празднуется день рождения, начинается и кончается учебный год. Но эти примеры хотя и наглядны, но не совсем точны. Солнце сегодня восходит и заходит не совсем в тех точках, где оно это делало вчера, листья в этом году могут распуститься раньше или позже, чем в предыдущем, да и вообще Земля оборачивается вокруг Солнца не за 365 дней, а несколько медленнее. Так что такая периодичность, в отличие от периодичности точных физических процессов, имеет приблизительный характер. Но именно чередование времени суток и времён года послужило для человечества началом измерения времени, создания календаря и внесло порядок в хозяйственное и социальное устройство.
Периодические процессы также называют колебательными движениями или просто колебаниями. Наиболее наглядно колебательное движение можно представить при помощи маятника. Движение маятника является примером механического колебательного движения. Обычный маятник представляет собой груз, подвешенный на нити (математический маятник) или прикреплённый к пружине (пружинный маятник). Математический маятник называется так потому, что при изучении его колебаний приходится, как это бывает всегда в математической физике (вспомним Галилея), чем– нибудь пренебрегать. В данном случае пренебрегают размером подвешенного тела и весом нити, на которой оно подвешено. Считается, что размер самого тела намного меньше длины нити, а его вес намного больше её веса. В идеале тело вообще не имеет размеров и представляет собой бесконечно малую точку, а нить абсолютно невесома. Так, конечно, не бывает, но для расчётов такая модель очень удобна.
Математический маятник. Процесс колебания математического маятника выглядит следующим образом (рис. 56). Отведём груз на некоторое расстояние. Тогда на него будет действовать сила тяжести, направленная вертикально вниз, и сила натяжения нити. В результате сложения этих сил груз будет совершать движение по дуге. Оказавшись в самой низкой точке, он достигнет положения равновесия. Но он не останавливается, а по инерции продолжает своё движение по дуге, но уже поднимаясь вверх. Так как ускорения во время снижения и во время подъёма равны по модулю, высота этой точки будет в точности равна той, с которой маятник начал своё снижение. Поэтому весь процесс движения повторяется, но в обратном направлении. При отсутствии трения эти колебания будут продолжаться бесконечно.
Пружинный маятник. Пружинный маятник похож по принципу действия на математический, но вместо гравитации в нём действует сила упругости пружины. Если закрепить груз на горизонтальной пружине, а затем эту пружину растянуть, то сила упругости будет пропорциональна удлинению пружины (рис. 57). Под действием этой силы груз начнёт двигаться вверх к положению равновесия. Но, дойдя до точки равновесия, он не остановится, а будет по инерции продолжать двигаться в противоположную сторону, сжимая пружину. Упругая сила сжимаемой пружины сначала остановит груз, а потом заставит его двигаться в обратном направлении, пока он не вернётся в исходную точку.
Рис. 56. Разложение сил при колебании маятника
Там на груз опять будет действовать сила растянутой пружины, и колебательный процесс будет продолжаться.
Колебание маятника можно охарактеризовать несколькими показателями. Периодом колебаний (Т) называется промежуток времени, по прошествии которого маятник оказывается в своём начальном положении. Понятие периода применимо не только к механическому движению маятника, но и к любому периодическому движению. Например, период обращения Земли вокруг своей оси равен 24 ч, период движения поездов в метро может быть равен, например, 3 мин и т. д.
Рис. 57. Пружинный маятник
Частота колебаний, обычно обозначаемая буквой f или греческой буквой v (ню), – это число колебаний в единицу времени, обычно в секунду. Единица частоты называется герц (Гц), который соответствует одному колебанию в секунду. Фазой колебаний называют величину, показывающую, какая часть колебаний прошла с начала колебательного процесса. Фаза измеряется в угловых величинах – градусах или радианах.
Амплитуда колебаний (А) – это максимальное значение, которое принимает колебательная система, т. е. «размах» колебания. Частота колебаний маятника определяется длиной нити и ускорением подвешенного к ней груза. Если на маятник не действуют никакие другие силы, кроме притяжения Земли, то это ускорение определяется ускорением свободного падения, возникающем под действием силы тяжести. Но сила тяжести может быть различной, скажем, в различных географических точках. На экваторе она меньше, чем на полюсе, поэтому один и тот же маятник в тропиках будет качаться с несколько меньшей частотой, чем в Заполярье.
1. Какое движение называется периодическим?
2. Какими факторами пренебрегают при описании действия математического маятника?
3. Какая сила вынуждает качаться математический маятник?
- Предыдущая
- 26/86
- Следующая