Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Истина в пределе. Анализ бесконечно малых - Дуран Антонио - Страница 13
Из всех математических открытий Ньютона, вне всяких сомнений, открытие анализа бесконечно малых было наиболее важно и имело наиболее значимые последствия.
Первые идеи о математическом анализе появились у Ньютона в наиболее знаменательный период его жизни — в 1665—1666 годы. В рукописи, написанной им за несколько лет до смерти в 1727 году, мы читаем: «В начале 1665 года я открыл метод приближенного вычисления с помощью рядов, а также правило, по которому можно свести бином любой степени к такому ряду. В мае того же года я открыл метод построения касательных Грегори и де Слюза, а в ноябре получил метод флюксий. В январе следующего года я развил теорию цветов, в мае начал работать над обратным методом флюксий. В том же году я начал размышлять о тяготении применительно к орбите Луны и на основе законов Кеплера определил силы, которые удерживают планеты на орбитах».
Его первая работа по математическому анализу «Анализ с помощью уравнений с бесконечным числом членов» (De analysi per aequationes numero terminorum infinitas) была завершена в 1669 году, но опубликована только в 1711-м.
Эту книгу Ньютон написал в конце июня 1669 года (точные даты неизвестны) всего за несколько дней, взяв за основу результаты собственных исследований, проведенных в 1664 году. Ньютон использовал разложение логарифмической функции в степенной ряд, описанное Николасом Меркатором в книге Logarithmotechnia. Он также руководствовался слухами и предположениями о том, какими исследованиями в то время занимались другие ученые.
«Анализ с помощью уравнений с бесконечным числом членов» имел огромную ценность. После публикации этой работы, несмотря на ее небольшой объем, Ньютон был признан создателем анализа бесконечно малых, а его труд — основополагающим в этом новом разделе математики. В первой части книги Ньютон показывает, как с помощью степенного ряда можно произвести расчет квадратуры для множества функций, используя в качестве основы базовую квадратуру
Рассуждения Ньютона стоит изложить подробнее. Для простоты мы приведем частный случай, описанный самим Ньютоном, для площади, ограниченной кривой, которая задается следующей формулой:
Ньютон действовал так.
Увеличим на бесконечно малую величину, которую обозначим за о (это обозначение использовал сам Ньютон) абсциссу х. Площадь увеличится на площадь прямоугольника с вершинами x, y(x), y(x + o) и x + o, как показано на иллюстрации. Возьмем прямоугольник со сторонами o и v такой, что его площадь будет равна упомянутому приращению площади. Получим:
Возведя обе части в квадрат и упростив равенство, получим:
Разделив обе части на о, получим:
Если теперь мы примем прирост х бесконечно малым, то есть приравняем o к нулю, то v = y, и предыдущая формула примет вид
Отсюда следует, что площадь, ограниченная кривой у = х2, равна 2/3 ∙ 3/2 x. Может показаться, что Ньютон пытался вычислить площадь, ограниченную кривыми определенного типа, но в действительности полученный им результат намного важнее. В первой части «Анализа» Ньютон хотел изложить общий алгоритм и подчеркнуть, что он применим не только в задачах расчета площади, «Все задачи о длине кривых, о величинах и о поверхностях тел и о центрах тяжести могут быть сведены в конце концов к определению плоской поверхности, ограниченной кривой», — делает он крайне важное замечание, за которым следует раздел под названием «Приложение вышеизложенного к другим примерам того же рода». Это замечание отделяет первую часть работы, в которой изложен общий метод, от второй, в которой излагаются различные способы его применения. Можно сказать, что результат его работы несколько неопределен: Ньютон видел огромную ценность найденного им абстрактного метода, однако, возможно, на начальном этапе, когда идея еще не оформилась окончательно, ему было сложно выразить ее доступно. Скорее всего, на этом этапе ему попросту не хватало терминов и обозначений. Он сосредоточил основное внимание на абстрактной задаче определения функции по известной производной. Кроме того, он рассматривает и обратную задачу о вычислении изменения функции (об этом рассказывается в конце книги). Наконец, он приводит краткий алгоритм расчета этого изменения (производной). Четкие правила вычисления производной позднее опубликовал Лейбниц, но не будем забывать, что в «Анализе» Ньютон изложил не все результаты, полученные им в области математического анализа к 1669 году.
Всё вышеизложенное позволяет заявить, что выход «Анализа» ознаменовал появление анализа бесконечно малых. «Анализ с помощью уравнений с бесконечным числом членов» — великолепный пример, позволяющий оценить акт творения в математике во всем его великолепии: при прочтении книги Ньютона мы становимся свидетелями процесса возникновения анализа бесконечно малых. Так, если мы углубимся в чтение «Анализа» и попытаемся увидеть уже известные нам термины и понятия современного математического анализа, это можно будет сравнить с просмотром детских фотографий человека, с которым мы познакомились уже в зрелом возрасте: сквозь еще не оформившиеся, детские черты уже проступает облик знакомого нам взрослого человека.
Закончив рукопись «Анализа», который принес автору известность среди британских математиков, Ньютон показал свой труд Барроу. Тот предложил незамедлительно отправить работу Джону Коллинзу, члену Лондонского королевского общества, который занимался обработкой почты, распространением результатов и новостей подобно Марену Мерсенну. Ньютона охватил нездоровый страх, который будет сопровождать его перед публикацией всех его трудов: обнародовать труд означало подставить его под удары критиков. Здесь следует отметить, чтобы отчасти прояснить причины полемики Ньютона и Лейбница, что в те годы понятие «публикация» имело несколько иной смысл, нежели в наши дни. Сегодня это означает публикацию в научных журналах или в виде книги, доступной всем желающим. В то время, когда книги и особенно журналы еще не набрали такую популярность, как всего несколько десятилетий спустя, публикация означала представление рукописи группе близких друзей, а также тем, кто занимался распространением научных трудов, как, например, Джон Коллинз или в особенности Марен Мерсенн.
Чтобы продемонстрировать опасения Ньютона, далее мы подробно расскажем о письмах, которые Барроу отправил Коллинзу. Сначала, 20 июля 1669 года Ньютон разрешил Барроу всего лишь уведомить Коллинза, что у него находится рукопись «Анализа», запретив упоминать имя автора и название работы: «Один мой друг, обладающий блестящими способностями, отправил мне позавчера несколько писем, в которых описывает метод вычисления размерностей величин, подобный методу Меркатора, но намного более общий применительно к решению уравнений. Я отправлю вам рукопись с одним из ближайших писем и верю, что она доставит вам удовольствие».
Одиннадцать дней спустя Ньютон разрешил Барроу отправить Коллинзу копию «Анализа» при условии, что имя автора будет сохранено в тайне, а рукопись будет возвращена. Обратите внимание, как деликатно Барроу указывает, что Коллинз может ознакомиться с рукописью, но делать копию не следует, иными словами, рукопись предназначена только для Коллинза: «Отправляю вам обещанные письма моего друга, которые, как я надеюсь, доставят вам немалое удовольствие. Я прошу, чтобы вы вернули мне письма, когда сочтете нужным, после того как прочитаете их. Мой друг согласился передать мне письма только на этих условиях, когда я впервые спросил его разрешения отправить их вам. Поэтому прошу вас как можно скорее дать мне знать, что вы получили их, чтобы избавить меня от беспокойства. Чтобы вы могли как можно раньше ознакомиться с ними, я ни минуты не думал о том, чтобы послать их вам обычной почтой».
- Предыдущая
- 13/34
- Следующая