Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Истина в пределе. Анализ бесконечно малых - Дуран Антонио - Страница 12
Вернемся немного назад, к самому знаменательному периоду (anni mirabiles) в жизни Ньютона, который длился примерно двадцать месяцев, с 1665 по 1666 год. Этот период Ньютон провел в отчем доме в Вулсторпе, так как Кембриджский университет был закрыт из-за эпидемии чумы. Именно в это время Ньютон начал работу над теорией тяготения, и именно тогда произошла известная история с яблоком. В тот период Ньютон занимался решением задачи о движении планет в рамках теории вихрей Декарта — он изучил ее самостоятельно еще до поступления в Кембридж. Как и Гюйгенс, он использовал в качестве отправной точки закон прямолинейной инерции и считал, что изменение прямолинейной траектории обусловлено действием двух сил: силы тяготения и центробежной силы. Использовав наряду с этими гипотезами третий закон Кеплера, он обнаружил, что центробежные силы, действующие на планеты, изменяются обратно пропорционально квадрату их расстояния от Солнца. Несомненно, уже тогда он предполагал, что падение яблока на землю и вращение Луны вокруг Земли подчиняются одной и той же силе тяготения. Однако чтобы пройти путь от этой гипотезы до открытия закона всемирного тяготения, потребовался долгий и упорный труд. Изначально Ньютон пытался сравнить ускорение, вызванное центробежной силой, под действием которой движется Луна, с ускорением, вызванным силой тяготения у поверхности Земли. Его гипотеза была верной, но Ньютон отказался от нее, так как она не подтверждалась расчетами: он использовал неточное значение радиуса Земли. Кроме того, в то время он еще не знал, что следует измерять расстояние между центрами тел.
Ньютон вернулся к задаче о движении планет лишь 10 лет спустя. Возможно, на него повлияло письмо Гука, полученное в 1676 году, в котором тот просил высказать мнение о гипотезе, согласно которой движение планет является следствием закона прямолинейной инерции и вызвано силой притяжения, направленной к центру орбиты. Эта сила, которую Ньютон позднее назвал центростремительной, пришла на смену силе тяготения и центробежной силе. Гипотеза Гука заставила Ньютона вновь обратиться к задаче о движении планет и впоследствии стала причиной серьезной вражды между Гуком и Ньютоном. Гук обвинил последнего в плагиате, когда тот заканчивал работу над «Началами». Ньютон обнаружил следующее: из двух первых законов Кеплера следует, что силы притяжения обратно пропорциональны квадрату расстояния. Именно об этих расчетах он упомянул во время встречи с Галлеем.
Расскажем, как развивались события, последовавшие за этой знаменательной встречей. Ньютон пересмотрел и дополнил свои вычисления и в ноябре 1684 года отправил Галлею небольшую статью на девяти страницах под названием De motu corporum in gyrum. В ней он привел наброски доказательства того, что траектория движения планеты под действием силы притяжения, обратно пропорциональной квадрату расстояния, является коническим сечением, а при скоростях, меньших определенного значения, траектория планеты принимает форму эллипса. В статье также содержался и обратный результат: как мы уже говорили, Ньютон получил его, взяв за основу гипотезу, изложенную в письме Гука.
Благодаря настойчивости Галлея, гениальности и невероятной трудоспособности Ньютона через два с половиной года свет увидела книга De motu en los Philosophiae naturalis principia mathematica — «Математические начала натуральной философии». Члены Лондонского королевского общества, ознакомившись с рукописью, постановили: «Математические начала натуральной философии» господина Ньютона должны быть незамедлительно опубликованы форматом в четверть листа». Публикацию книги Галлею пришлось оплатить из своего кармана, что стало серьезным испытанием для юного члена Королевского общества.
«Начала» были изданы в трех томах с предисловием, в котором, помимо прочего, изложены три закона Ньютона. В третьем томе под названием «Система мира» описываются законы движения небесных тел. В нем центростремительная сила, которая удерживает планеты на эллиптических орбитах, отождествляется с силой тяготения. Как следствие, сила, удерживающая Луну на орбите, — это та же самая сила, под действием которой предметы падают на поверхность Земли. Кроме того, сила тяготения действует на все тела во Вселенной. Она пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними. Так как следствием этого закона являются законы Кеплера о движении планет, это означает, что под действием этой же силы движутся спутники планет и кометы вокруг Солнца. Этим же объясняется неравномерность движения планет, которую Ньютон изучал на примере Луны. В предисловии к первому изданию «Начал» Галлей писал: «Мы наконец узнали, почему нам кажется, что Луна порой движется неравномерно, как будто насмехаясь над нами, когда мы пытаемся описать числами ее движение, до сей поры загадочное для любого астронома».
В «Системе мира» также рассматривались и другие вопросы. Заслуживает упоминания теория, по которой приливы вызваны притяжением Солнца и Луны, а также теория о форме планет, которые всегда сплющены у полюсов (форма планет определяет период их обращения вокруг своей оси). Последняя теория была окончательно подтверждена французскими экспедициями XVIII века в Лапландию и Перу, целью которых было измерение дуги меридиана. Эти экспедиции ознаменовали окончательный триумф системы Ньютона над системой Декарта.
Ньютон и анализ бесконечно малых
Исаак Ньютон — один из самых известных и уважаемых ученых всех времен. Хотя это часто не принимается во внимание, но он в наибольшей степени обязан этой славе своим способностям к математике. Именно благодаря им он заметно выделялся среди других ученых того времени, и без них было бы невозможно написание его главного труда — «Математические начала натуральной философии». Иными словами, Ньютон открыл «систему мира», благодаря чему, как удачно заметил Лагранж, стал самым удачливым из всех ученых, поскольку существует лишь одна система мира, которую можно открыть. Именно благодаря глубоким знаниям математики, которыми не обладали его современники, Ньютон смог подкрепить и обосновать свои открытия. По словам Вестфолла, «математика была первой и главной страстью Ньютона. Именно из математики он заимствовал критерии логической строгости, которых неизменно придерживался на протяжении всего своего пути в науке. Ньютон собирался совершить плавание по неизвестным океанам мысли, из которых не вернулись многие искатели приключений XVII века. Ньютон не просто вернулся из этого путешествия — он привез с собой трофеи. Возможно, именно математическая дисциплина помогла ему добиться успеха».
Многие считают, что Ньютон был исключительно физиком, точнее натурфилософом, или занимался прикладной математикой. Стоит напомнить, что писал по этому поводу Дерек Том Уайтсайд, составитель прекрасного восьмитомника рукописей Ньютона по математике: «Никогда не следует забывать, что математика была для Ньютона не просто набором инструментов для поиска истины. Она обладала внутренней красотой и силой, не зависящей от внешних причин и способов практического применения. Тем, кто не чувствует элегантность и мощь математики как самостоятельной дисциплины, я представляю Ньютона — «чистого» математика, который, как в библейской метафоре, удалился от мира в башню из слоновой кости в Кембридже, где занимался поисками новых теорем, свойств, алгоритмов и доказательств, элегантных самих по себе. И сколь удивительно он использовал свой талант и способности! В то время в мире не было более одаренного и разностороннего математика, никого, кто больше него разбирался бы в алгебре, геометрии и в тонкостях анализа бесконечно малых».
- Предыдущая
- 12/34
- Следующая