Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Для юных математиков. Веселые задачи - Перельман Яков Исидорович - Страница 23
Итак, встреча стрелок случится спустя 5 5/11 минуты после того, как пройдет 1 час, т. е. в 5 5/11 минут второго.
Когда же произойдет следующая встреча?
Нетрудно сообразить, что это случится спустя 1 час 5 5/11 мин., т. е. в 2 часа 10 10/11 мин. Следующая – спустя еще 1 час 5 5/11 мин., т. е. в 3 часа 16 4/11 мин., и т. д. Всех встреч, как легко видеть, будет 11; одиннадцатая наступит через 1 1/11 х 11 = 12 часов после первой, т. е. в 12часов; другими словами, она совпадает с первой встречей, и дальнейшие встречи повторятся снова в прежние моменты.
Вот все моменты встреч:
1-я встреча – в 1 час. 5 5/11 мин.
2-я » – в 2 » 10 10/11
3-я » – в 3 » 16 4/11
4-я » – в 4 » 21 9/11
5-я » – в 5 » 27 3/11
6-я » – в 6 » 32 8/11
7-я » – в 7 » 38 2/11
8-я » – в 8 » 43 7/11
9-я » – в 9 » 49 1/11
10-я » – в 10 » 54 6/1111-я » – в 12 часов.
Решение задачи № 42
Эта задача решается весьма сходно с предыдущей. Начнем опять с 12 часов, когда обе стрелки совпадают. Нужно вычислить, сколько времени потребуется для того, чтобы минутная стрелка обогнала часовую ровно на полкруга, – тогда обе стрелки и будут направлены как раз в противоположные стороны. Мы уже знаем (см. предыдущую задачу), что в течение целого часа минутная стрелка обгоняет часовую на 11/12 полного круга; чтобы обогнать ее всего на 1/2 круга, понадобится меньше времени, чем целый час, – меньше во столько раз, во сколько 1/2 меньше 11/12, т. е. потребуется всего 6/11 часа. Значит, после 12 часов стрелки в первый раз располагаются одна против другой спустя 6/11 часа, или 32 8/11 минуты. Взгляните на часы в 32 8/11 минуты первого, и вы убедитесь, что стрелки направлены в противоположные стороны.
Единственный ли это момент, когда стрелки так расположены? Конечно, нет. Такое положение стрелки занимают спустя 32 8/11 минуты после каждой встречи. А мы уже знаем, что встреч бывает 11 в течение двенадцати часов; значит, и располагаются стрелки врозь тоже 11 раз в течение 12 часов. Найти эти моменты нетрудно:
12 ч. + 32 8/11 мин. = 12 ч. 32 8/11 мин.
1 ч. 5 5/11 мин. + 32 8/11 мин. = 1 ч. 38 2/11 мин.
2 ч. 10 10/11 мин. + 32 8/11 мин. = 2 час. 43 7/11 мин.
3 ч. 16 1/11 мин. + 32 8/11 мин. = 3 ч. 49 1/11 мин. и т. д.
Вычислить остальные моменты предоставляю вам самим.Решение задачи № 43
Если начать следить за стрелками ровно в 12 часов, то в течение первого часа мы искомого расположения не заметим. Почему? Потому что часовая стречка проходит 1/12 того, что проходит минутная, и, следовательно, отстает от нее гораздо больше, чем требуется для искомого расположения. На какой бы угол ни отошла от XII минутная стрелка, часовая повернется на 1/12 этого угла, а не на 1/2, как нам требуется. Но вот прошел час; теперь минутная стрелка стоит у XII, часовая – у 1, на 1/12 полного оборота впереди минутной. Посмотрим, не может ли такое расположение стрелок наступить в течение второго часа. Допустим, что момент этот наступил тогда, когда часовая стрелка отошла от цифры XII на долю оборота, которую мы обозначаем через х. Минутная стрелка успела за то же время пройти в 12 раз больше, т. е. 12·x. Если вычесть отсюда один полный оборот, то остаток 12·x-1 должен быть вдвое больше, чем х, т. е. равняться 2·x. Мы видим, следовательно, что 12·x-1 = 2·x откуда следует, что 1 целый оборот равен 10·x (действительно: 12·x-10·x = 2·x). Но если 10·x = целому обороту, то одно X = 1/10части оборота. Вот и решение задачи: часовая стрелка отошла от цифры XII на 12/10 полного оборота, на что требуется 12/10 часов, или 1 час 12 мин. Минутная стрелка при этом будет вдвое дальше от XII, т. е. на расстоянии 1/5 оборота; это отвечает 60/5 = 12 минутам, – как и должно быть.
Мы нашли одно решение задачи. Но есть и другие: стрелки в течение двенадцати часов располагаются таким же образом не один раз, а несколько. Попытаемся найти остальные решения.
Для этого дождемся двух часов; минутная стрелка стоит у XII, а часовая – у II. Рассуждая по предыдущему, получаем равенство
12·x-2 = 2·x
откуда 2 целых оборота равны 10·x и, значит, x = 1/5 целого оборота. Это соответствует моменту 12/5 = 2 ч. 24 м.
Дальнейшие моменты вы легко вычислите сами. Тогда вы найдете, что стрелки располагаются согласно требованию задачи в следующие 10 моментов:
в 1 час 12 мин.
в 2 » 24 »
в 3 » 36 »
в 4 » 48 »
в 6 часов
в 7 » 12 »
в 8 » 24 »
в 9 » 36 »
в 10 » 48 »в 12 часов.
Ответы: «в 6 часов» и «в 12 часов» могут показаться неверными, – но только с первого взгляда. Действительно: в 6 часов часовая стрелка стоит у VI, минутная же – у XII, т. е. ровно вдвое дальше. В 12 же часов часовая стрелка удалена от XII на нуль, а минутная, если хотите, на «два нуля» (потому что двойной нуль – то же, что и нуль); значит, и этот случай, в сущности, удовлетворяет условию задачи. Решение задачи № 44
После предыдущих разъяснений решить эту задачу уже не трудно. Легко сообразить, рассуждая, как прежде, что в первый раз требуемое расположение стрелок будет в тот момент, который определяется равенством:
12·x – 1 = x/2,
откуда 1 = 11 1/2·x, или x = 2/23 целого оборота, т. е. через 1 1/23 часа после XII. Значит, в 1 час. 2 14/23 минуты стрелки будут расположены требуемым образом. Действительно, минутная стрелка должна стоять посредине между XII и 1 1/23 часами, т. е. на 12/23 часа, что как раз и составляет 1/23 полного оборота (часовая стрелка пройдет 2/23 целого оборота).
Второй раз стрелки расположатся требуемым образом в момент, который определится из равенства:
12·x – 2 = x/2,
откуда 2 = 11 1/2·x и х = 4/23; искомый момент – 2 часа 5 5/23 мин.
Третий искомый момент – 3 час. 7 19/23 мин. и т. д.Решение задачи № 45
Задача эта решается так же, как и предыдущая. Вообразим, что обе стрелки стояли у XII, и затем часовая отошла от XII на некоторую часть полного оборота, которую мы обозначим буквою х. Минутная стрелка за то же время успела повернуться на 12·?. Если времени прошло не больше одного часа, то для удовлетворения требованию нашей задачи необходимо, чтобы минутная стрелка отстояла от конца целого круга на столько же, на сколько часовая стрелка успела отойти от начала; другими словами:
1-12·x = x.
Отсюда 1 = 13·x (потому что 13·x-12·x = x). Следовательно, x = 1/13 доле целого оборота. Такую долю оборота часовая стрелка проходит в 12/13 часа, т. е. показывает 55 5/13 мин. первого. Минутная стрелка в то же время прошла в 12 раз больше, т. е. 12/13 полного оборота; обе стрелки, как видите, отстоят от XII одинаково, а следовательно, одинаково отодвинуты и от VI по разные стороны.
Мы нашли одно положение стрелок – именно то, которое наступает в течение первого часа. В течение второго часа подобное положение наступит еще раз; мы найдем его, рассуждая по предыдущему, из равенства
1-(12·x-1) = x или 2-12·x = x,
откуда 2 = 13·x (потому что 13·x-12·x = x), и, следовательно, x = 2/13 полного оборота. В таком положении стрелки будут в 1 11/13часа, т. е. в 50 10/13 минуты второго.
В третий раз стрелки займут требуемое положение, когда часовая стрелка отойдет от XII на 3/13 полного круга, т. е. в 2 10/13 часа, и т. д. Всех положений 11, причем после VI часов стрелки меняются местами: часовая стрелка занимает те места, в которых была раньше минутная, а минутная становится на места часовой.Решение задачи № 46
Обычно отвечают – «7 секунд». Но такой ответ, как сейчас увидим, неверен.
Когда часы бьют три, мы наблюдаем два промежутка:
1) между первым и вторым ударом;
2) между вторым и третьим ударом.
Оба промежутка длятся 3 секунды; значит, каждый продолжается вдвое меньше – именно 1 1/2 секунды.
Когда же часы бьют семь, то таких же промежутков бывает 6. Шесть раз по полторы секунды составляют 9 секунд. Следовательно, часы «бьют семь» (т. е. делают 7 ударов)в 9 секунд.Решение задачи № 47
- Предыдущая
- 23/30
- Следующая