Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Истина и красота. Всемирная история симметрии. - Стюарт Йен - Страница 23
В руках Лагранжа эта идея стала отправной точкой для атаки на все алгебраические уравнения.
Лагранж родился в итальянском городе Турине[24] и был наречен Джузеппе Лодовико Лагранджиа. Семья имела французские корни: прадед сначала был капитаном французской кавалерии, а потом переехал в Италию и поступил на службу к герцогу Савойскому. Еще в ранней молодости Джузеппе начал писать свою фамилию как «Лагранж», в качестве имени при этом используя Лодовико или Луиджи. Его отец был казначеем в Министерстве общественных работ и укреплений в Турине; мать Тереса Гроссо была дочерью врача. Лагранж был первым из их одиннадцати детей, лишь двоим из которых довелось дожить до зрелых лет.
Семья относилась к высшим слоям итальянского общества, однако в результате некоторых неудачных вложений Лагранжи оказались практически разорены. Было решено, что молодой Лагранж будет изучать право, и он поступил в Туринский университет. Ему нравились право и классические предметы, а математические занятия, на которых в основном преподавалась эвклидова геометрия, наводили на юношу тоску. Однако попавшаяся ему как-то раз книга по алгебраическим методам в оптике, написанная английским астрономом Эдмондом Галлеем, самым решительным образом переменила его мнение о математике. Лагранж направился по пути, который и стал определяющим в его ранних исследованиях, — применение математики к механике и в особенности к небесной механике.
Он женился на своей кузине Виттории Конти. «Моя жена, приходящаяся мне кузиной (и даже жившая в течение долгого времени в нашем семействе), — прекрасная хозяйка и совершенно не требовательна», — писал он своему другу, также математику, Жану ле Рон д'Аламберу. Он также доверительно сообщал ему, что вообще не собирается иметь детей — так оно и вышло.
Лагранж занял должность в Берлине, написал много научных статей и несколько раз становился обладателем ежегодной премии Французской академии: в 1772 году он получил награду вместе с Эйлером, в 1774-м был удостоен ее за работу по динамике Луны, а в 1780-м — за работу о влиянии планет на орбиты комет. Другим его пристрастием была теория чисел. В 1770 году он доказал теорему, представляющую собой классику жанра, — теорему о четырех квадратах, согласно которой всякое положительное целое число представимо в виде суммы четырех квадратов. Например, 7 = 22 + 12 + 12 + 12, 8 = 22 + 22 + 02 + 02 и так далее.
Он стал членом Французской академии наук и перебрался в Париж, где и провел всю оставшуюся жизнь. Он полагал, что разумно подчиняться законам страны проживания даже в случае личного с ними несогласия, — точка зрения, которая, возможно, помогла ему избежать участи многих других интеллектуалов во время Французской революции. В 1788 году Лагранж опубликовал свой шедевр — «Аналитическую механику», где переосмыслил механику как ветвь анализа. Он гордился тем, что в его объемистой книге вообще нет рисунков; в его глазах это делало изложение логически более строгим.
В 1792 году Лагранж женился второй раз, на дочери астронома Рене-Франсуазе-Аделаиде ле Моннье. В августе 1793 года, во время Террора, Академию закрыли; единственной ее частью, не прекратившей функционировать, была Комиссия мер и весов. От работы были отстранены многие ведущие ученые — химик Антуан Лавуазье, физик Шарль Огюстен Кулон, а также Пьер Симон Лаплас. Лагранж стал новым председателем Комиссии мер и весов.
К этому моменту у него стали возникать проблемы из-за его итальянского происхождения. Революционное правительство провело закон, требовавший ареста каждого иностранца, родившегося во враждебной стране. Лавуазье, тогда еще сохранявший свое влияние, добился, чтобы Лагранжа исключили из списков тех, кто подпадал под действие нового закона. Вскоре революционный трибунал приговорил Лавуазье к смерти, и на следующий же день его гильотинировали. Лагранж заметил, что «только мгновение потребовалось, чтобы пала его голова, но сотни лет не хватит, чтобы появилась другая такая».
При Наполеоне Лагранж получил целый ряд почестей: он стал кавалером Ордена почетного легиона, в годы Империи, в 1808 году, ему был пожалован титул графа, а в 1813-м он стал кавалером Большого Креста Императорского Ордена Содружества. Через неделю после получения Большого Креста он скончался.
В 1770 году — в год открытия теоремы о четырех квадратах — Лагранж взялся за написание обширного трактата по теории уравнений, говоря при этом: «В данном мемуаре я предполагаю исследовать различные методы, найденные к настоящему моменту для алгебраического решения уравнений, свести их к общим принципам и объяснить a priori, почему эти методы приводят к успеху в степени три и четыре, но непригодны для старших степеней». Как выразился Жан-Пьер Тиньоль в своей книге «Теория Галуа алгебраических уравнений», Лагранж «явным образом намеревался определить не только как, но и почему эти методы работают».
Лагранж добился гораздо более глубокого понимания методов эпохи Возрождения, чем сами их изобретатели; он даже доказал, что найденную им общую схему, объяснявшую их успехи, нельзя распространить на степени пять и выше. Тем не менее он не смог сделать следующего шага — выяснить, возможно ли какое-нибудь решение в этих случаях. Вместо этого он сообщает нам, что его результаты «окажутся полезными для тех, кто захочет заняться решением уравнений высших степеней, поскольку снабдят их различными взглядами на этот вопрос и, главное, предохранят от большого числа ложных шагов и попыток».
Лагранж обратил внимание, что все специальные приемы, которые использовали Кардано, Тарталья и другие, основывались на одном методе. Вместо того чтобы непосредственно искать корни заданных уравнений, они пытались свести задачу к решению некоторого вспомогательного уравнения, корни которого связаны с исходными, однако отличаются от них.
Вспомогательное уравнение в случае кубического уравнения было более простым — квадратным. Эту «разрешающую квадрику» можно было решить вавилонскими методами; решение же кубического уравнения затем восстанавливалось путем извлечения кубического корня. Именно такова структура формулы Кардано. Для уравнения четвертой степени вспомогательное уравнение тоже было более простым — кубическим. Эту «разрешающую кубику» можно было решить методом Кардано; решение же уравнения четвертой степени затем восстанавливалось извлечением корня четвертой степени — другими словами, кратным извлечением квадратного корня. Именно такова структура формулы Феррари.
Можно представить себе растущее воодушевление Лагранжа. Если подобная закономерность сохранится, то уравнение пятой степени будет иметь «разрешающую квадрику», которую можно будет решить методом Феррари, а затем извлечь корень пятой степени. И процесс может продолжиться: уравнение шестой степени будет иметь разрешающую квинтику, которую можно будет решить с помощью того, что получит известность как метод Лагранжа. Он сможет решить уравнения любой степени.
Суровая реальность вернула его на землю. Разрешающее уравнение для уравнения пятой степени оказалось не квартикой, а уравнением более высокой степени — шестой. Тот самый метод, который позволил упростить кубику и квартику, привел к усложнению квинтики.
Достичь прогресса в математике посредством замены сложной задачи на еще более сложную невозможно. Объединенный метод Лагранжа отказал на уравнении пятой степени. Тем не менее Лагранж не доказал, что уравнение пятой степени неразрешимо, так как могли существовать и какие-то другие методы.
В самом деле, почему бы и нет?
Для Лагранжа это был риторический вопрос. Однако один из его последователей отнесся к этому вопросу серьезно и ответил на него.
Его звали Паоло Руффини, и когда я говорю, что он «ответил» на риторический вопрос Лагранжа, я слегка лукавлю. Он полагал, что ответил, и его современники не обнаружили в его ответе ничего неверного — отчасти потому, что никогда не воспринимали его работы настолько серьезно, чтобы в самом деле подвергнуть их всесторонней проверке. Руффини прожил свою жизнь в убеждении, что доказал неразрешимость уравнения пятой степени в радикалах. Только после его смерти оказалось, что в его доказательстве имеется значительный пробел. Его легко было просмотреть среди многих и многих страниц запутанных вычислений; проблема состояла в некотором «очевидном» допущении — таком, что он даже не заметил, что это предположение делалось.
24
Лагранж родился в 1736 году, когда Турин был частью (де факто столицей) королевства Пьемонт-Сардиния, как тогда назывались владения Савойской династии. (Примеч. перев.)
- Предыдущая
- 23/86
- Следующая