Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Пятьсот двадцать головоломок - Дьюдени Генри Эрнест - Страница 44
100. 1. Положив на разные чашки гири в 5 и 9 фунтов, отвесить 4 фунта. 2. С помощью 4 фунтов отвесить еще 4 фунта. 3. Отвесить в третий раз 4 фунта. 4. Отвесить в четвертый раз 4 фунта, причем остаток будет также равен 4 фунтам. 5. —9. Поделить с помощью весов каждую порцию в 4 фунта на две равные части.
102. Решениями будут числа 39 157 и 57 139. В каждом случае произведение чисел 39 и 57 минус 1 равно 2222.
103. Если квадрат целого числа оканчивается повторяющимися цифрами, то этими цифрами могут быть лишь 4, как в случае 144 = 12 2. Но число таких повторяющихся цифр не может превосходить трех; следовательно, ответом служит число 1444 = 38 2.
104. Расположив цифры следующим образом:
мы увидим, что обе суммы равны.
105. Умножив 273 863 на 365, получим 99 959 995. Заметим, что любое восьмизначное число, у которого первые четыре цифры повторяются, делится без остатка на 73 (и на 137). Кроме того, если такое число оканчивается на 5 или 0, то оно делится также и на 365 (или на 50 005). Зная эти факты, можно сразу же выписать ответ.
106. Разделим 7 101 449 275 362 318 840 579 на 7 «уголком», как нас учили в школе. При делении 7 на 7 получим 1, следующая цифра 1 даст в частном 0, затем снова 1 и т. д., пока мы не дойдем до конца. Сверив частное с делимым, мы увидим, что оно действительно получается при переносе первой семерки делимого в конец. Частное, получающееся при перестановке в конец первой цифры делимого, можно найти для любого делителя и любой цифры.
Очень интересно исследовать задачу в общем виде.
Выбрав делитель равным 2, получим число 2-10-52-6-31 578-94-736-8-4-.
Далее цикл замыкается. Черточки стоят в тех местах, где при делении на 2 нет остатка. Заметьте, что непосредственно за черточкой следуют цифры 1, 5, 6, 3, 9, 7, 8, 4, 2. Следовательно, если необходимо, чтобы число начиналось с 8, то я возьму 842 105 и т. д., отправляясь от цифры 8, стоящей после черточки. Если имеется полный цикл, как в этом случае, а также в случае делителей, равных 3, 6 и 11, то количество цифр искомого числа равно делителю, умноженному на 10 минус 2. Если вы возьмете в качестве делителя 4, то получите пять отдельных циклов. Так, 4-10 256- даст вам числа, начинающиеся с 4 или 1; 20-512-8- — с 2, 5 или 8; 717 948- с 7; 3076-92 — с 3 или 9; 615 384- даст числа, начинающиеся с 6.
Для некоторых делителей, например для 5 и 9, хотя они и порождают несколько отдельных циклов, требуется такое же количество цифр, как если бы они порождали один полный цикл. Наш делитель 7 порождает три цикла: один, показанный выше и дающий числа, у которых первой цифрой служат 7, 1 или 4; второй — для чисел, начинающихся с 5, 8 или 2; третий — с 6, 9 или 3.
107. Мы можем разделить 857 142 на 3, просто перенеся 2 из конца в начало, либо разделить 428 571, перенеся 1.
108. Вот как можно выразить число 64 с помощью двух четверок и арифметических знаков:
[Интерес к задаче «Четыре четверки» с момента ее опубликования периодически оживлялся. Об относительно недавней дискуссии, посвященной этой задаче, я писал в январском номере журнала Scientific Americanза 1964 г. (см. также заметку в разделе ответов в следующем номере того же журнала). Таблицу, в которой с помощью четырех четверок выражены все числа от 1 до 100, можно найти в книгах: L. Harwood Clarke «Fun With Figures» (N. Y., 1954, pp. 51—53) и Angela Dunn «Mathematical Baffers» (N. Y., 1964, pp. 5—8).
Число 64 легко выразить как с помощью четырех четверок: (4 + 4) × (4 + 4), так и с помощью трех четверок: 4 × 4 × 4. М. Бикнел и В. Е. Хоггат в журнале Recreational Mathematics Magazine( 14, 1964) указывают 64 способа, которыми можно выразить 64 с помощью четырех четверок.
Кнут в журнале Mathematics Magazine( 37, 1964, pp. 308—310) показал, как представить 64, используя только одну четверку и три рода символов: знак квадратного корня, знак факториала и скобки. Чтобы выразить таким образом число 64, требуется 57 знаков квадратного корня, 9 знаков факториала и 18 скобок. С помощью вычислительной машины удалось выяснить, что все положительные целые числа, не превосходящие 208, можно выразить аналогичным образом. Кнут высказывает предположение, что этот метод применим ко всем целым положительным числам.
Дьюдени частично прав в своем утверждении относительно 113. Насколько мне известно, никто не сумел представить это число без использования весьма нестандартных символов или чрезвычайно сложных процедур, вроде той, которую предложил Кнут. — М. Г.]
109. Какие символы считать допустимыми — дело вкуса, но я бы лично предпочел обойтись без всяких log.
Вот несколько решений:
110. Если мы умножим 497 на 2, то получим 994. Если же мы сложим эти два числа, то получим 499. Цифры в обоих случаях одни и те же. Аналогичный результат справедлив для 263 и 2. Мы получим соответственно 526 и 265.
[Г. Линдгрен указывает, что, вводя девятки после первой цифры, можно получить два ответа при любом желаемом числе цифр: 4997 + 2 = 4999; 499 × 2 = 9994; 2963 + 2 = 2965; 2963 × 2 = 5926; аналогично для 49 997+(или ×)2; 29 963+(или ×)2 и т. д. — М. Г.]
111. Квадрат числа 836, равный 698 896, содержит четное число цифр, причем его можно читать как обычным способом слева направо, так и справа налево. Среди всех квадратов, содержащих данное четное число цифр, палиндромический квадрат наименьший.
112. Если число нулей, заключенных между двумя единицами, равно любому числу, кратному 3, плюс 2, то два сомножителя всегда можно выписать немедленно с помощью следующего любопытного правила: 1001 = 11 × 91; 1 000 001 = 101 × 9901; 1 000 000 001 = 1001 × 999 001; 1 000 000 000 001 = 10 001 × 99 990 001. В последнем случае мы получаем требуемый ответ, а 10 001 = 73 × 137. Кратность вхождения 3 в 11 равна 3 (11 = 3 × 3 + 2). Следовательно, в каждый сомножитель мы вставляем по три нуля и добавляем лишнюю девятку.
Если бы наше число, как я предположил, содержало 101 нуль, то наибольшее число, на которое можно умножить 3, чтобы произведение не превосходило 101, равнялось бы 33 и сомножители содержали бы 33 нуля и 34 девятки и имели бы вид, указанный выше. Если бы количество нулей в нашем числе было четным, то вы смогли бы найти два сомножителя следующим образом: 1001 = 11 × 91; 100 001 = 11 × 9091; 10 000 001 = 11 × 909 091 и т.д.
113. Число 1 234 567 890 разлагается на множители следующим образом: 2 × 3 × 3 × 5 × 3607 × 3803. Если 3607 мы умножим на 10, а 3803 на 9, то получим два составных множителя: 36 070 и 34 227, дающих в произведении 1 234 567 890 и обладающих наименьшей разностью.
114. Для того чтобы число делилось на 11, нужно, чтобы либо четыре чередующиеся цифры в сумме давали 17, а остальные пять — 28, либо, наоборот, четыре цифры давали в сумме 28, а пять — 17. Так, в приведенном примере (482 539 761) цифры 4, 2, 3, 7, 1 дают в сумме 17, а 8, 5, 9, 6 дают 28. Далее, четыре цифры могут в сумме дать 17 девятью различными способами, а пять цифр могут дать 17 двумя способами. Всего получается 11 способов. В каждом из этих 11 случаев четыре цифры можно переставить 24, а пять цифр — 120 способами, что дает 2880 вариантов. Всего благоприятных исходов получается 2880 × 11 = 31680. Поскольку девять цифр можно переставить 362 880 способами, то мы получаем 115 против 11 за то, что наугад взятое число не будет делиться на 11 [34].
- Предыдущая
- 44/70
- Следующая