Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Пятьсот двадцать головоломок - Дьюдени Генри Эрнест - Страница 43
80. Слуга должен нести чемодан 1⅓ км и передать его джентльмену, который донесет чемодан до станции. Садовник должен нести другой чемодан 2⅔ км, а потом отдать его слуге, который и донесет чемодан до станции. Таким образом, каждый из них пронесет один чемодан 2⅔ км — иначе говоря, труд, который затратят на переноску багажа джентльмен, слуга и садовник, будет одинаковым.
81. Пусть n — число ступенек эскалатора; время, которое требуется, чтобы одна ступенька исчезла внизу, примем за единицу.
Тротмен проходит 75 ступенек за n- 75 единиц времени, или со скоростью 3 ступеньки за ( n- 75)/25 единиц, времени. Следовательно, Уокер проходит 1 ступеньку за ( n- 75)/25 единиц времени. Но он же проходит и 50 ступенек за n- 50 единиц времени, или 1 ступеньку за ( n- 50)/50 единиц времени. Следовательно, ( n- 50)/50 = ( n- 75)/25, откуда n= 100.
82. Путешествие длилось 10
ч. Аткинс прошел пешком 5 км; Браун — 13 км, а ослик, принадлежавший Крэнби, пробежал в общей сложности 80 км. Надеюсь, ослику после такого подвига дали хорошенько отдохнуть.83. Велосипедисты A, B, C, Dмогут проехать один километр соответственно за ⅙,
, и ч. Следовательно, они совершают полный круг за , , и ч и, таким образом, в первый раз встречаются через ч (или, что то же, через 6⅔ мин). Четыре раза по 6⅔ мин составит 26⅔ мин. Поэтому четвертая встреча всех четырех велосипедистов произойдет в 12 ч 26 мин 40 с.84. Брукс догонит Картера через 6⅔ мин.
85. 1) Муха встретит Bв 1 ч 48 мин.
2) Определять расстояние, которое пролетит муха, не нужно. Это слишком трудная задача. Зато можно просто найти время, когда бы могли столкнуться автомобили, — 2 ч. На самом деле муха пролетает (в километрах):
сумма этой бесконечно убывающей геометрической прогрессии равна 300 км.
86. Наименьшее общее кратное чисел 2, 3, 4, 5, 6 и 7 равно 420. Вычитая из него 1, получаем 419 — возможное число ступенек. Кроме того, условиям задачи будут удовлетворять числа, полученные последовательным прибавлением чисел, кратных 420, к 419. Следовательно, число ступенек в эскалаторе может быть равно 419, 839, 1259, 1679 и т. д. Поскольку интересующий нас эскалатор содержит меньше 1000 ступенек и на линии есть еще один эскалатор с меньшим числом ступенек, обладающий теми же свойствами, что и первый, то эскалатор на «Керли-стрит» содержит 839 ступенек.
87. Молодые люди едут втрое быстрее, чем идут пешком; следовательно, ¾ всего времени им необходимо затратить на обратный путь и только V4 ехать на автобусе. Таким образом, они будут ехать в течение 2 ч, покрыв расстояние в 18 км, и идти пешком 6 ч. Возвратятся они ровно через 8 ч после отъезда.
88. Водитель должен провезти четверых солдат 12 км и высадить их в 8 км от пункта назначения. Затем он должен вернуться на 8 км и подобрать еще четверых солдат (из восьми), которые к тому времени там окажутся, провезти их 12 км и высадить в 4 км от пункта назначения. Вернувшись затем на 8 км за остальными солдатами, которые к тому времени успеют пройти 8 км от исходного пункта, везти их 12 км до конца. Все солдаты прибудут на место назначения одновременно, причем автомобиль пройдет 52 км за 2⅗ ч. Следовательно, солдаты прибудут на место в 2 ч 36 мин.
89. Расстояние между пунктами составляет 300 км.
90. Расстояние равно 13⅛ км; так что в город мистер Уилкинсон идет 2⅝ ч, а возвращается 4⅜ ч, затратив на путь в общей сложности 7 ч.
91. Расстояние от Лондона до Баглминстера составляет 72 км.
92. Робинсон догонит Брауна через 12 мин после старта.
93. Для решения задачи не требуется алгебраических выкладок, не нужно знать и расстояние между городами. Отправим оба поезда от места встречи, где бы она ни произошла, обратно с теми же скоростями. Тогда за час первый поезд пройдет 60 км, а второй 40 км. Поэтому расстояние между поездами за час до встречи равно 60 + 40, или 100 км.
94. Через 20 мин после начала путешествия Пэт сообщил, что пройдена половина того расстояния, которое оставалось до Пигтауна. Следовательно, путь от Богули до Пигтауна занимает 1 ч.
Отъехав от Пигтауна на 5 миль, Пэт и полковник Крэкхэм оказались вдвое ближе к Болифойну, чем к Пигтауну. Еще через час они достигли Болифойна. Следовательно, путь от Пигтауна до Болифойна занимает 3 ч. Поскольку 5 миль попутчики проехали за 2 ч, то за 4 ч они проезжали 10 миль. Следовательно, искомое расстояние 10 миль.
95. Второй человек, увидев, что его приятель повернулся и идет ему навстречу, стал пятиться и прошел таким образом 200 м. Конечно, его поведение было весьма эксцентрично, но он поступил именно так, и это единственный ответ на вопрос задачи. В результате приятели смогли, глядя друг на друга, двигаться по прямой в одном направлении.
96. Если бы весы были неверными из-за различного веса их чашек, то истинный вес пудинга составлял бы 154 г; первое показание весов дало бы 130, а второе 178 г. Половина суммы показаний весов (среднее арифметическое) равна 154. Но из рисунка к условию задачи видно, что чашки весят поровну и что ошибка проистекает из-за разницы в длине плеч коромысла [33]. Следовательно, показания весов равнялись 121 и 169 г, а истинный вес составляет 143 г. Извлекая квадратный корень из произведения показаний весов, мы получим 143 (среднее геометрическое). Длины плеч весов относятся как 11 к 13.
Если мы обозначим через х истинный вес, то для разобранных случаев получим соответственно следующие уравнения:
97. Поскольку одна банка весит 1 кг, то, глядя на левую часть рисунка, мы видим, что 8 пакетов уравновешивают 3 кг и, следовательно, один пакет уравновешивает ⅜ кг. Во втором случае один пакет уравновешивает 6 кг. Умножив ⅜ на 6, мы получим
. Извлекая затем квадратный корень из , получаем , или 1½ кг. Это и есть истинный вес одного пакета. Значит, восемь пакетов весят 12 кг.98. Важно отметить, что отец, ребенок и собака вместе весили 180 фунтов, как это показано на рисунке. Далее, разность между 180 и 162 равна 18, что совпадает с удвоенным весом собаки. Значит, собака весит 9, а ребенок 30 фунтов, так как, если из 30 фунтов вычесть 70% этого веса, получится ровно 9.
99. На первых весах мы видим, что яблоко и 6 слив равны по весу груше, поэтому на вторых весах можно, не нарушая равновесия, заменить грушу на яблоко и 6 слив. Затем можно убрать по 6 слив с каждой чашки и обнаружить, что 4 яблока весят столько же, сколько и 4 сливы. Следовательно, одно яблоко равно по весу одной сливе. Заменяя на первых весах яблоко сливой, мы получаем, что одна груша равна по весу 7 сливам. Как пишут в старых учебниках: ч. т. д.
- Предыдущая
- 43/70
- Следующая