Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Черная маска из Аль-Джебры - Левшин Владимир Артурович - Страница 19


19
Изменить размер шрифта:

Попробуйте подсчитать, сколько это килограммов риса, если каждое зернышко в среднем весит 0,0182 грамма. Знаете, что получится? Больше ста шестидесяти семи триллионов килограммов! Стоит ли доказывать, что моя задача хоть и проста, но практически невыполнима?

Шестерка поклонилась и села. Ей долго хлопали. Потом поднялась латинская буква Эн. Она сказала так:

— Уважаемая Шестерка познакомила нас с геометрической прогрессией, где все числа непрерывно растут. Такая прогрессия называется возрастающей. Я позволю себе занять ваше внимание сразу двумя геометрическими прогрессиями — возрастающей и убывающей. И сделаю это на одном и том же примере. Задача моя будет так же проста, как предыдущая, и так же невыполнима. Моя предшественница рассказала прелестную сказку об изобретателе шахмат и коварном шахе. Позвольте и мне задать вам задачу, связанную с шахматами.

Эн вынула из кармана платок, развернула его и показала публике. На платке были нарисованы шестьдесят четыре квадрата, черные и белые, — как на шахматной доске.

— Будем считать, — продолжала Эн, — что этот платок заменяет нам шахматную доску. Обратите внимание — толщина платка равна 0,1 — одной десятой миллиметра. Складываю платок пополам. Теперь его толщина стала вдвое больше: две десятых миллиметра. Зато и площадь его стала меньше в два раза. Складываю платок еще раз вдвое. Теперь его толщина в четыре раза больше первоначальной, но и площадь уменьшилась в четыре раза. Я предлагаю складывать этот платок вдвое до тех пор, пока возможно. А потом продолжайте складывать мысленно.

Эн бросила платок в зал, кто-то его подхватил и стал перегибать: раз, второй, третий… Перегнул в шестой и крикнул:

— Готово! Теперь видна только одна клетка. Толщина платка увеличилась в шестьдесят четыре раза. Ничего невозможного тут нет.

— Вы сложили платок только шесть раз, — возразила Эн самонадеянному зрителю, — а надо было шестьдесят четыре! Понимаете разницу? Если бы вам удалось это сделать, толщина платка стала бы такой большой, что он перерос бы горы, миновал солнце и уперся бы в какую-нибудь отдаленную звезду.

— А вы докажите! — крикнули в зале.

Тогда Эн стала решать задачу на доске.

— Неужели вы не догадались, что я почти повторила предыдущую задачу? После каждого перегибания толщина платка увеличивается вдвое и возрастает по закону геометрической прогрессии: 2, 4, 8, 16, 32, 64 и так далее. Разница только в том, что после шестидесяти четырех перегибаний толщина платка станет больше не в 263, а в 264 раз. Оно и понятно: ведь эта прогрессия начинается не с 20 — двух в нулевой, а с 21 — двух в первой степени. Толщина развернутого платка 0,1 миллиметра. Чтобы вычислить толщину сложенного платка, надо 0,1 умножить на 264. Получается 1 844 674 407 371 километр.

Один триллион восемьсот сорок четыре миллиарда шестьсот семьдесят четыре миллиона четыреста семь тысяч триста семьдесят один километр.

А ведь расстояние от Земли до Солнца всего-навсего около ста пятидесяти миллионов километров!

Кажется, условие состязания выполнено: задача проста и практически невыполнима.

— А где же обещанная убывающая прогрессия? — спросил Сева.

— Да здесь же, — ответила Эн. — Ведь в то время как толщина платка увеличивается, площадь его все время уменьшается: 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, и так далее. Это и есть убывающая геометрическая прогрессия. После шестидесяти четырех перегибаний площадь станет в 1/264 раз — в одну вторую, взятую в шестьдесят четвертой степени раз, меньше первоначальной. И если бы мы складывали платок дальше, то она все время приближалась бы к нулю, а толщина (или высота) стремилась бы к Великанам в Бесконечность. Вы согласны? Тогда благодарю за внимание.

В зале снова зашумели, захлопали. Барон Мюнхгаузен позвонил в колокольчик и сказал:

— Жюри одинаково восхищено и той и другой задачей. Обеим участницам вручается первый приз.

Он передал победительницам шахматные доски с красивыми фигурами из слоновой кости и добавил:

— Меня так заинтересовали оба выступления, что следующее путешествие я совершу в Бесконечность. А потом — кто знает? — может быть, доберусь и до Нуля!

Барон поклонился. Соревнования кончились, и мы отправились спать. Ведь завтра нам идти на строительство! А перед этим не мешает хорошенько отдохнуть.

Олег.

Новые открытия Нулика

(Нулик — отряду РВТ)

Здравствуйте, ребята! Ну и работу вы нам задали! Теперь мы только и делаем, что играем в шахматы. Каждый сам смастерил себе доску и фигуры. Играем с утра до вечера — то друг с другом, а то и каждый сам с собой. Но я все-таки успел сделать открытие: по шахматной доске сразу видно, что Карликания и Аль-Джебра друзья. Ведь каждая шахматная клетка имеет свое обозначение, которое состоит из цифр и букв. Например, е5, а4, d8. Разве это не доказательство дружбы?

Задачу с зернами все-таки решили проверить. Конечно, без риса. Просто все стали писать на своих досках, сколько надо положить рисинок на каждую клетку: 1, 2, 4, 8, 16, 32, 64, 128… Когда заполнили первый ряд, выяснилось, что одни пишут слева направо, а другие справа налево.

Стали спорить, как надо писать. Положили две доски одну под другой. На одной числа написаны внизу, слева направо, на другой — вверху, справа налево. Числа, одинаково отстоящие от края, оказались друг против друга. Прямо как на палке у фокусника!

Я попробовал сложить каждую пару, но одинаковых чисел не получилось. Понятно: ведь прогрессия-то не арифметическая, а геометрическая! Тогда я их перемножил и сделал второе открытие: все произведения оказались совершенно одинаковые:

1 Х 128 = 128;

2 X 64 = 128;

4 X 32 = 128;

8 X 16 = 128.

Да, теперь я уже не тот Нулик, что прежде. Меня и вправду не узнать. А все ваши письма!

Дальше считать зерна никто не захотел — кому же охота писать такие огромные числа? Но один Нулик задал интересный вопрос: если на шестьдесят четвертую клетку надо положить девять с лишним квинтиллионов зерен, то сколько всего зерен будет на доске, если, конечно, заполнить все клетки?

— Что тут думать! — сказал другой Нулик. — Всего на доске будет зерен два в шестьдесят третьей степени. То есть вот эти девять квинтиллионов.

— Ничего подобного, — возразил третий, — девять квинтиллионов будет только на последней клетке, а на всей доске во много раз больше.

Они заспорили, а я снова посмотрел на свою шахматную доску, где в первом ряду написана геометрическая прогрессия: 1, 2, 4, 8, 16, 32, 64, 128. После треугольника Паскаля я вообще стал очень внимательно рассматривать числа — все время ищу закономерности! Вот и сейчас сложил первый член прогрессии со вторым: 1 + 2 = 3. Сумма их оказалась на единицу меньше третьего члена — четверки. Потом я сложил 1 + 2 + 4. Получилось семь. А это на единицу меньше восьми. 1 + 2 + 4 + 8 = 15. И это тоже меньше шестнадцати на единицу. Выходит, сумма всех предыдущих членов этой геометрической прогрессии меньше последующего всегда на единицу. А это значит, что на шестидесяти трех клетках шахматной доски будет столько же зерен, сколько на последней, шестьдесят четвертой, только на одно зернышко меньше. А всего на доске зерен будет в два раза больше, чем на последней клетке, минус единица: 2 * 263 — 1. А это ведь все равно что 264 — 1.

Так я сделал третье открытие. И для этого мне не понадобилось ни писать всю прогрессию до конца, ни умножать девять квинтиллионов с хвостиком на два. Хорошая штука алгебра!

Нулик-Шахматист.

Волшебная практика

(Сева — Нулику)

Мы чуть не опоздали к началу рабочего дня. И все из-за Тани. На стройках, говорит, всегда пыль и грязь. Как бы мне, говорит, там не испортить любимого платья в оборочках. Наконец она появилась в комбинезоне и сапогах, на голове косынка, защитные очки. Прямо хоть снимай для газеты: «Знатная электросварщица Татьяна Н.».