Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (ПР) - Большая Советская Энциклопедия "БСЭ" - Страница 96
А. Н. Колмогоров начал изучение нового вопроса теории приближений — задачи о нахождении при фиксированном n такой системы функций j1 ,..., jn , для которой наилучшие приближения функций заданного класса полиномами
были бы наименьшими (т. н. задача о поперечнике класса функций). В этом направлении в дальнейшем было выяснено, например, что для ряда важных классов периодических функций наилучшими в указанном смысле системами являются тригонометрические полиномы.Теория приближений функций является одним из наиболее интенсивно разрабатываемых направлений в теории функций. Идеи и методы теории приближений являются отправной точкой исследования в ряде вопросов вычислительной математики. С 1968 в США издаётся специализированный журнал «Journal of Approximation Theory».
См. также Приближение функций комплексного переменного .
Лит.:Монографии . Ахиезер Н. И., Лекции по теории аппроксимации, 2 изд., М., 1965; Гончаров В. Л., Теория интерполирования и приближения функций, 2 изд., М., 1954; Натансон И. П., Конструктивная теория функций, М. — Л., 1949; Никольский С. М., Приближение функций многих переменных и теоремы вложения, М., 1969; Тиман А. Ф., Теория приближения функций действительного переменного, М., 1960.
Обзоры. Математика в СССР за тридцать лет. 1917—1947, М. — Л., 1948, с. 288—318; Математика в СССР за сорок лет. 1917—1957, т. 1, М., 1959, с. 295—379; История отечественной математики, т. 3, К., 1968, с. 568—588.
С. А. Теляковский.
Приближение функций комплексного переменного
Приближе'ние фу'нкций ко'мплексного переме'нного, раздел комплексного анализа, изучающий вопросы приближённого представления (аппроксимации) функций комплексного переменного посредством аналитических функций специальных классов. Центральная проблематика относится к приближению функций полиномами и рациональными функциями. Основными являются задачи о возможности приближения, скорости приближения и аппроксимационных свойствах различных способов представления функций (интерполяционных последовательностей и рядов, рядов по ортогональным полиномам и полиномам Фабера, разложений в непрерывные дроби и т.п.). Теория приближений тесно связана с др. разделами комплексного анализа (теорией конформных отображений, интегральными представлениями, теорией потенциала и др.); многие теоремы, формулируемые в терминах теории приближений, являются, по существу, глубокими результатами о свойствах аналитических функций и природе аналитичности.
Одним из первых результатов о полиномиальной аппроксимации является теорема Рунге, согласно которой любая функция, голоморфная в односвязной области плоскости комплексного переменного z, может быть равномерно аппроксимирована на компактных подмножествах (см. Компактность ) этой области посредством полиномов от z. Общая задача о возможности равномерного приближения полиномами ставится так: для каких компактов К в комплексной плоскости любая функция f, непрерывная на К и голоморфная на множестве внутренних точек К, допускает равномерную аппроксимацию на К (с любой степенью точности) посредством полиномов от z. Необходимым и достаточным условием возможности такой аппроксимации является связность дополнения компакта К. Эта теорема для компактов без внутренних точек была доказана М. А. Лаврентьевым (1934), для замкнутых областей — М. В. Келдышем (1945) и в общем случае — С. Н. Мергеляном (1951).
Пусть Еп = En (f, K ) — наилучшее приближение функции f на компакте К посредством полиномов от z степени не выше n (в равномерной метрике). Если К — компакт со связным дополнением и функция f голоморфна на К, то последовательность {Еп } стремится к нулю быстрее некоторой геометрической прогрессии: En < qn , < q = q < 1 (n > N ). Если f непрерывна на К и голоморфна во внутренних точках К, то скорость её полиномиальной аппроксимации зависит как от свойств f на границе К (модуль непрерывности, дифференцируемость), так и от геометрических свойств границы К.
Другие направления исследований — равномерные и наилучшие приближения рациональными функциями, приближения целыми функциями, весовые приближения полиномами, приближения полиномами и рациональными функциями в интегральных метриках. Большое внимание уделяется проблематике, связанной с приближением функций нескольких комплексных переменных.
Лит.: Уолш Д.-Л., Интерполяция и аппроксимация рациональными функциями в комплексной области, пер. с англ., М,, 1961; Маркушевич А. И., Теория аналитических функций, т. 2, М., 1968; Смирнов В. И.. Лебедев Н. А., Конструктивная теория функций комплексного переменного, М. — Л., 1964; Мергелян С. Н., Приближения функций комплексного переменного. в кн.: Математика в СССР за сорок лет. 1917—1957, т. 1, М., 1959, с. 383-98; Гончар А. А., Мергелян С. Н., Теория приближений функций комплексного переменного, в кн.: История отечественной математики, т. 4, кн. 1, К,, 1970, с. 112—78.
А. А. Гончар.
Приближённое интегрирование
Приближённое интегри'рование определённых интегралов, раздел вычислительной математики, занимающийся разработкой и применением методов приближённого вычисления определённых интегралов .
Пусть y = f (x ) — непрерывная функция на отрезке [a, b ] и интеграл
Если для функции f (x ) известны значения первообразной F (x ) при x = а и х = b, то по формуле Ньютона — Лейбница
I (f ) = F (b ) - F (a )
В противном случае приходится искать др. пути вычисления l . Одним из путей является построение квадратурных формул, приближённо выражающих значение I в виде линейной функции некоторого числа значений функции f (x ) и её производных. Квадратурной формулой, содержащей только значения функции f (x ), называют выражение вида
Sn = Ak f (xk ),
в котором точки xk , k = 1, 2,..., n, xk Î [a, b ], называют узлами, а коэффициенты Ak — весами.
Для каждой непрерывной функции f (x ) значение I может быть вычислено с помощью сумм Sn с любой точностью. Выбор квадратурной формулы определяется классом W, к которому относят конкретную функцию f (x ), способом задания функции и имеющимися вычислительными средствами. Погрешностью квадратурной формулы называется разность
- Предыдущая
- 96/356
- Следующая
