Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Большая Советская Энциклопедия (НА) - Большая Советская Энциклопедия "БСЭ" - Страница 45


45
Изменить размер шрифта:

где

  Оценки Xj , получающиеся в результате решения системы нормальных уравнений, лишены систематических ошибок (E xj = xj ); дисперсии D xj ; величин Xj равны kdjj /d , где d — определитель системы (5), а djj — минор, соответствующий диагональному элементу [раj aj ] (иными словами, djj /d — вес оценки Xj ). Если множитель пропорциональности k (k называется дисперсией на единицу веса) заранее неизвестен, то для его оценки, а также для оценки дисперсии D xj служат формулы:

  k » S/ (n - m ) и D xj » s2 j = Sdjj /d (n - m )

(S — минимальное значение исходной суммы квадратов). При некоторых общих предположениях можно показать, что если количество наблюдений n достаточно велико, то абсолютная погрешность приближённого равенства xi » Xj меньше tsj с вероятностью, близкой к значению интеграла (1). Если случайные ошибки наблюдений di подчиняются нормальному распределению, то все отношения (Xj - xj )/sj распределены по закону Стьюдента с n - m степенями свободы [точная оценка абсолютной погрешности приближённого равенства производится здесь с помощью интеграла (2) так же, как в случае одного неизвестного]. Кроме того, минимальное значение суммы S в вероятностном смысле не зависит от X 1 , X 2 ,..., Xm и поэтому приближённые значения дисперсий оценок D xj » s2 j не зависят от самих оценок Xj .

  Один из наиболее типичных случаев применения Н. к. м. — «выравнивание» таких результатов наблюдений Yi , для которых в уравнениях (3) aij = aj (ti ), где aj (t ) — известные функции некоторого параметра t (если t — время, то t 1 , t 2 ,... — те моменты времени, в которые производились наблюдения). Особенно часто встречается в приложениях случай так называемой параболической интерполяции, когда aj (t ) — многочлены [например, a 1 (t ) = 1, a 2 (t ) = t , a 3 (t ) = t2 ,... и т.д.]; если t 2 — t 1 = t 3 — t 2 =... = tn tn -1 , a наблюдения равноточные, то для вычисления оценок Xj можно воспользоваться таблицами ортогональных многочленов, имеющимися во многих руководствах по современной вычислительной математике. Другой важный для приложения случай — так называемая гармоническая интерполяция, когда в качестве aj (t ) выбирают тригонометрические функции [например, aj (t ) = cos (j - 1) t , j = 1, 2,..., m ].

  Пример. Для оценки точности одного из методов химического анализа этим методом определялась концентрация CaO в десяти эталонных пробах заранее известного состава. Результаты равноточных наблюдений указаны в таблице (i — номер эксперимента, ti — истинная концентрация CaO, Ti — концентрация CaO. определённая в результате химического анализа, Yi = Ti - ti — ошибка химического анализа):

i 1 2 3 4 5 6 7 8 9 10 ti 4 8 12,5 16 20 25 31 36 40 40 Yi - 0,3 - 0,2 - 0,4 - 0,4 - 0,2 - 0,5 + 0,1 - 0,5 -0,6 -0,5

Если результаты химического анализа не имеют систематических ошибок, то E yi = 0. Если же такие ошибки имеются, то в первом приближении их можно представить в виде: E yi = a + bti (a называется постоянной ошибкой, а bti — методической ошибкой) или, что то же самое,

где

  Для отыскания оценок a и b достаточно оценить коэффициенты

Условные уравнения в данном случае имеют вид:

поэтому ai1 = 1, ai2 = ti - t (согласно предположению о равноточности наблюдений, все pi = 1). Так как

то система нормальных уравнений записывается особенно просто:

[a1 a1 ] X1 = [Ya1 ]; [a2 a2 ] X2 = [Ya2 ],

где

  Дисперсии компонент решения этой системы суть

где k — неизвестная дисперсия на единицу веса (в данном случае k — дисперсия любой из величин Y i ). Так как в этом примере компоненты решения принимают значения X 1 = -0,35 и X 2 = -0,00524, то

  D x1 » s1 2 = 0,00427,

  D x2 » s2 2 = 0,0000272,

  s1 = 0,065, s2 = 0,00522.

  Если случайные ошибки наблюдений подчиняются нормальному распределению, то отношения |Xj xj l/sj (j = 1, 2) распределены по закону Стьюдента. В частности, если результаты наблюдений лишены систематических ошибок, то x 1 = x 2 = 0 и, значит, закону Стьюдента должны подчиняться отношения |X 1 |/s 1 и |X 2 |/s 2 . С помощью таблиц распределения Стьюдента с nm = 8 степенями свободы можно убедиться, что если действительно x 1 = x 2 = 0, то с вероятностью 0,999 каждое из этих отношений не должно превосходить 5,04 и с вероятностью 0,95 не должно превосходить 2,31. В данном случае |X 1 |/s 1 = 5,38 > 5,04, поэтому гипотезу отсутствия систематических ошибок целесообразно отвергнуть; в то же время следует признать, что гипотеза об отсутствии методической ошибки (x2 = 0) не противоречит результатам наблюдений, так как |X 2 |/s 2 = 1,004 < 2,31. Т. о., можно заключить, что для определения t по результату наблюдения Т целесообразно пользоваться приближённой формулой t = Т + 0,35.