Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

100 великих научных открытий - Самин Дмитрий К. - Страница 61


61
Изменить размер шрифта:

«Диофант — пишет В.А. Никифоровский, — сформулировал правила алгебраических операций со степенями неизвестной, соответствующие нашим умножению и делению степеней с натуральными показателями, и правила знаков приумножении. Это дало возможность компактно записывать многочлены, производить умножение их, оперировать с уравнениями. Он указал также правила переноса отрицательных членов уравнения в другую часть его с обратными знаками, взаимного уничтожения одинаковых членов в обеих частях уравнения».

Начиная с V века центр математической культуры постепенно перемещается на восток — к индусам и арабам. Математика индусов была числовой. Она отмечена стремлением достичь строгости эллинов в доказательствах и обосновании геометрии, довольствуясь чертежами. Основные достижения индусов состоят в том, что они ввели в обращение цифры, называемые нами арабскими, и позиционную систему записи чисел, обнаружили двойственность корней квадратного уравнения, двузначность квадратного корня и ввели отрицательные числа. Первое известное нам применение десятичной позиционной системы относится к 595 году — сохранилась плита, на которой число лет 346 записано в такой системе.

Наиболее известными математиками Индии были Ариабхата (прозванный «первым», около 500 г.) и Брахмагупта (около 625 г.). Индусы рассматривали числа безотносительно к геометрии. Они распространили правила действия над рациональными числами на числа иррациональные, производя над ними непосредственные выкладки.

Еще одно достижение индусов в совершенствовании алгебраической символики состоит в том, что они ввели обозначения нескольких различных неизвестных и их степеней. Как у Диофанта, они были по сути дела сокращениями слов.

Вслед за индийскими математиками пользоваться правилом положения стали математики Ближнего и Среднего Востока. Особую роль в истории развития алгебры в первой половине IX века сыграл трактат аль-Хорезми на арабском языке под названием «Книга о восстановлении и противопоставлении» (на арабском языке — «Китаб аль-джебр валь-мукабала»). Позднее при переводе на латинский язык арабское название трактата было сохранено. С течением времени «аль-джебр» сократили до «алгебры».

В трактате решение уравнений рассматривается уже не в связи с арифметикой, а как самостоятельный раздел математики. Арабский математик показывает, что в алгебре применяются неизвестные, их квадраты и свободные члены уравнений. Аль-Хорезми назвал неизвестное «корнем». При решении различных видов уравнений аль-Хорезми предлагает переносить отрицательные члены уравнений из одной части в другую, называя это восстановлением. Вычитание равных членов из обеих частей уравнения при этом он называет противопоставление (валь мукабала).

«В своем трактате аль-Хорезми, — отмечает Александр Свечников, — рассматривает неизвестное число как величину особого рода, вводит термин корень, свободный член называет дирхем (так в то время называли и денежную единицу). Он распределяет уравнения по видам, разъясняет, как применять правила восполнения и противопоставления, формулирует правила решения уравнений различных видов.

В рукописях аль-Хорезми все математические выражения и все выкладки записаны словами, вот почему алгебру того времени и более поздних времен называли риторической, т. е. словесной. В период работы над алгебраическим трактатом аль-Хорезми уже знал о числовой алгебре Вавилона и других стран Востока. Он был знаком с геометрической алгеброй греков и достижениями индийских астрономов и математиков.

Аль-Хорезми выделил алгебраический материал в особый раздел математики и освободил его от геометрического толкования, хотя в некоторых случаях пользовался геометрическими доказательствами. Алгебраический труд аль-Хорезми стал образцом, который изучали и которому подражали многие математики более позднего времени. Последующие алгебраические сочинения и учебники по своему характеру стали приближаться к современным. Алгебраический трактат аль-Хорезми послужил началом создания науки алгебры. Он был в числе первых сочинений по математике, переведенных на латинский язык. В то время в Европе все научные труды писали и печатали на латинском языке».

При решении задачи главное — осмысление содержания задачи, способность выразить его на языке алгебры. Проще говоря, записать условие задачи посредством символов — математических знаков.

Диофант, как уже говорилось, дал понятие об алгебраическом уравнении, записанном символами, однако очень далекими от современных. Первым стал обозначать буквами не только неизвестные, но и данные величины Франсуа Виет. Тем самым ему удалось внедрить в науку великую мысль о возможности выполнять алгебраические преобразования над символами, т. е. ввести понятие математической формулы. Этим он внес решающий вклад в создание буквенной алгебры, чем завершил развитие математики эпохи Возрождения и подготовил почву для появления результатов Ферма, Декарта, Ньютона.

Франсуа Виет (1540–1603) родился на юге Франции в небольшом городке Фантене-ле-Конт. Отец Виета был прокурором. По традиции сын выбрал профессию отца и стал юристом, окончив университет в Пуату. В 1560 году двадцатилетний адвокат начал свою карьеру в родном городе, но через три года перешел на службу в знатную гугенотскую семью де Партене. Он стал секретарем хозяина дома и учителем его дочери — двенадцатилетней Екатерины. Именно преподавание пробудило в молодом юристе интерес к математике.

В 1671 году Виет перешел на государственную службу, став советником парламента, а затем советником короля Франции Генриха III.

В 1580 году Генрих III назначил Виета на важный государственный пост рекетмейстера, который давал право контролировать от имени короля выполнение распоряжений в стране и приостанавливать приказы крупных феодалов.

Находясь на государственной службе, Виет оставался ученым. Он прославился тем, что сумел расшифровать код перехваченной переписки короля Испании с его представителями в Нидерландах, благодаря чему король Франции был полностью в курсе действий своих противников.

В 1584 году по настоянию Гизов Виета отстранили от должности и выслали из Парижа. Именно на этот период приходится пик его творчества. Получив неожиданный досуг, ученый поставил своей целью создание всеобъемлющей математики, позволяющей решать любые задачи. У него сложилось убеждение в том, «что должна существовать общая, неизвестная еще наука, обнимающая и остроумные измышления новейших алгебраистов, и глубокие геометрические изыскания древних».

Виет изложил программу своих исследований и перечислил трактаты, объединенные общим замыслом и написанные на математическом языке новой буквенной алгебры, в изданном в 1591 году знаменитом «Введение в аналитическое искусство». Перечисление шло в том порядке, в каком эти труды должны были издаваться, чтобы составить единое целое — новое направление в науке. К сожалению, единого целого не получилось. Трактаты публиковались в совершенно случайном порядке, и многие увидели свет только после смерти Виета. Один из трактатов вообще не найден. Однако главный замысел ученого замечательно удался: началось преобразование алгебры в мощное математическое исчисление. Само название «алгебра» Виет в своих трудах заменил словами «аналитическое искусство». Он писал в письме к де Партене: «Все математики знали, что под алгеброй и алмукабалой… скрыты несравненные сокровища, но не умели их найти. Задачи, которые они считали наиболее трудными, совершенно легко решаются десятками с помощью нашего искусства…»

Основы своего подхода Виет называл видовой логистикой. Следуя примеру древних, он четко разграничивал числа, величины и отношения, собрав их в некую систему «видов». В эту систему входили, например, переменные, их корни, квадраты, кубы, квадрато-квадраты и т. д., а также множество скаляров, которым соответствовали реальные размеры — длина, площадь или объем. Для этих видов Виет дал специальную символику, обозначив их прописными буквами латинского алфавита. Для неизвестных величин применялись гласные буквы, для переменных — согласные.