Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

100 великих научных открытий - Самин Дмитрий К. - Страница 60


60
Изменить размер шрифта:

О жизни Евклида (около 365 г. до нашей эры — 300 г. до нашей эры) почти ничего не известно. До нас дошли только отдельные легенды о нем. Первый комментатор «Начал» Прокл (V век нашей эры) не мог указать, где и когда родился и умер Евклид. По Проклу, «этот ученый муж» жил в эпоху царствования Птолемея I. Некоторые биографические данные сохранились на страницах арабской рукописи XII века: «Евклид, сын Наукрата, известный под именем „Геометра“, ученый старого времени, по своему происхождению грек, по местожительству сириец, родом из Тира».

Одна из легенд рассказывает, что царь Птолемей решил изучить геометрию. Но оказалось, что сделать это не так-то просто. Тогда он призвал Евклида и попросил указать ему легкий путь к математике. «К геометрии нет царской дороги», — ответил ему ученый. Так в виде легенды дошло до нас это ставшее крылатым выражение.

Царь Птолемей I, чтобы возвеличить свое государство, привлекал в страну ученых и поэтов, создав для них храм муз — Мусейон. Здесь были залы для занятий, ботанический и зоологический сады, астрономический кабинет, астрономическая башня, комнаты для уединенной работы и главное — великолепная библиотека. В числе приглашенных ученых оказался и Евклид, который основал в Александрии — столице Египта — математическую школу и написал для ее учеников свой фундаментальный труд.

Именно в Александрии Евклид основывает математическую школу и пишет большой труд по геометрии, объединенных под общим названием «Начала» — главный труд своей жизни. Полагают, что он был написан около 325 года до нашей эры.

Предшественники Евклида — Фалес, Пифагор, Аристотель и другие много сделали для развития геометрии. Но все это были отдельные фрагменты, а не единая логическая схема.

Как современников, так и последователей Евклида привлекала систематичность и логичность изложенных сведений. «Начала» состоят из 13 книг, построенных по единой логической схеме. Каждая из книг начинается определением понятий (точка, линия, плоскость, фигура и т. д.), которые в ней используются, а затем на основе небольшого числа основных положений (5 аксиом и 5 постулатов), принимаемых без доказательства, строится вся система геометрии.

В то время развитие науки и не предполагало наличия методов практической математики. Книги I–IV охватывали геометрию, их содержание восходило к трудам пифагорейской школы. В книге V разрабатывалось учение о пропорциях, которое примыкало к Евдоксу Книд-скому. В книгах VII–IX содержалось учение о числах, представляющее разработки пифагорейских первоисточников. В книгах X–XII содержатся определения площадей в плоскости и пространстве (стереометрия), теория иррациональности (особенно в X книге); в XIII книге помещены исследования правильных тел, восходящие к Теэтету.

«Начала» Евклида представляют собой изложение той геометрии, которая известна и поныне под названием Евклидовой геометрии. В качестве постулатов Евклид выбрал такие предложения, в которых утверждалось то, что можно проверить простейшими построениями с помощью циркуля и линейки. Евклид принял также некоторые общие предложения-аксиомы, например, что две величины, порознь равные третьей, равны между собой. На основе таких постулатов и аксиом Евклид строго и систематично развил всю планиметрию.

В «Началах» он описывает метрические свойства пространства, которое современная наука называет Евклидовым пространством.

Евклидово пространство является ареной физических явлений классической физики, основы которой были заложены Галилеем и Ньютоном. Это пространство пустое, безграничное, изотропное, имеющее три измерения. Евклид придал математическую определенность атомистической идее пустого пространства, в котором движутся атомы. Простейшим геометрическим объектом у Евклида является точка, которую он определяет как то, что не имеет частей. Другими словами, точка — это неделимый атом пространства.

Бесконечность пространства характеризуется тремя постулатами:

«От всякой точки до всякой точки можно провести прямую линию». «Ограниченную прямую можно непрерывно продолжить по прямой». «Из всякого центра и всяким раствором может быть описан круг».

Учение о параллельных и знаменитый пятый постулат («Если прямая, падающая на две прямые, образует внутренние и по одну сторону углы меньшие двух прямых, то продолженные неограниченно эти две прямые встретятся с той стороны, где углы меньше двух прямых») определяют свойства Евклидова пространства и его геометрию, отличную от неевклидовых геометрий.

Обычно о «Началах» говорят, что после Библии это самый популярный написанный памятник древности. Книга имеет свою, весьма примечательную историю. В течение двух тысяч лет она являлась настольной книгой школьников, использовалась как начальный курс геометрии. «Начала» пользовались исключительной популярностью, и с них было снято множество копий трудолюбивыми писцами в разных городах и странах. Позднее «Начала» с папируса перешли на пергамент, а затем на бумагу. На протяжении четырех столетий «Начала» публиковались 2500 раз: в среднем выходило ежегодно 6–7 изданий. До двадцатого века книга считалась основным учебником по геометрии не только для школ, но и для университетов.

«Начала» Евклида были основательно изучены арабами, а позднее европейскими учеными. Они были переведены на основные мировые языки. Первые подлинники были напечатаны в 1533 году в Базеле. Любопытно, что первый перевод на английский язык, относящийся к 1570 году, был сделан Генри Биллингвеем, лондонским купцом.

Конечно, все особенности Евклидова пространства были открыты не сразу, а в результате многовековой работы научной мысли, но отправным пунктом этой работы послужили «Начала» Евклида. Знание основ Евклидовой геометрии является ныне необходимым элементом общего образования во всем мире.

Можно смело утверждать, что Евклид заложил основы не только геометрии, но и всей античной математики.

Лишь в девятнадцатом веке исследования основ геометрии поднялись на новую, более высокую ступень. Удалось выяснить, что Евклид перечислил далеко не все аксиомы, которые на самом деле нужны для построения геометрии. В действительности при доказательствах ученый ими пользовался, но не сформулировал.

Тем не менее все выше сказанное нисколько не умаляет роли Евклида, первого показавшего, как можно и как нужно строить математическую теорию. Он создал дедуктивный метод, прочно вошедший в математику. А значит, все последующие математики в известной степени являются учениками Евклида.

ОСНОВЫ АЛГЕБРЫ

Считается, что эллины заимствовали первые сведения по алгебре у вавилонян. Греческий философ-неоплатоник Прокл Диадох отмечал в своем сочинении: «Согласно большинству мнений, геометрия была впервые открыта в Египте, имела свое происхождение в измерении площадей». Воздействие традиций вавилонской алгебры на математику Древней Греции и алгебраическую школу стран ислама подчеркивается в «Истории математики». Создание основ математики в том виде, к которому мы привыкли при изучении этой науки в школе, выпало на долю греков и относится к VI–V векам до нашей эры. Античная наука достигла вершины в работах Евклида, Архимеда, Аполлония.

Новый подъем античной математики в III веке нашей эры связан с творчеством великого математика Диофанта. Его основной труд — «Арифметика». К сожалению, лишь шесть книг из тринадцати книг дошли до нашего времени. Диофант сумел возродить и развить числовую алгебру вавилонян, освободив ее от геометрических построений, которыми пользовались греки. У Диофанта впервые появляется буквенная символика. Он ввел обозначения: неизвестной, квадрата, куба, четвертой, пятой и шестой степеней, а также первых шести отрицательных степеней. В «Истории математики» это отмечено особо: «Книга Диофанта свидетельствует о наличии у него буквенной символики. Значение этого шага огромно. Только на такой основе могло быть создано буквенное исчисление, развит формульный аппарат, позволяющий часть наших мыслительных операций заменить механическими преобразованиями. Однако Диофант, видимо, не нашел в этом деле последователей ни в его эпоху, ни много позднее. Лишь с конца XV века в Европе началась интенсивная разработка алгебраической символики, а завершение создания буквенного исчисления произошло только в конце XVI — начале XVII века в трудах Виета и Декарта».