Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Другая история науки. От Аристотеля до Ньютона - Калюжный Дмитрий Витальевич - Страница 99
Французский математик Блэз Паскаль (1623–1662) сконструировал счетное устройство, чтобы облегчить труд своего отца – налогового инспектора. Это устройство позволяло суммировать десятичные числа. Внешне оно представляло собой ящик с многочисленными шестеренками. Основой суммирующей машины стал счетчик-регистратор, или счетная шестерня. Она имела десять выступов, на каждом из которых были нанесены цифры. Для передачи десятков на шестерне располагался один удлиненный зуб, зацеплявший и поворачивающий промежуточную шестерню, которая передавала вращение шестерне десятков. Дополнительная шестерня была необходима для того, чтобы обе счетные шестерни – единиц и десятков – вращались в одном направлении.
Счетная шестерня при помощи храпового механизма (передающего прямое движение и не передающего обратного) соединялась с рычагом. Отклонение рычага на тот или иной угол позволяло вводить в счетчик однозначные числа и суммировать их. В машине Паскаля храповой привод был присоединен ко всем счетным шестерням, что позволяло суммировать и многозначные числа.
Англичане Роберт Биссакар в 1654-м и независимо от него в 1657 году С. Патридж разработали прямоугольную логарифмическую линейку, конструкция которой в основном сохранилась до наших дней.
Немецкий философ, математик, физик Вильгельм Лейбниц (1646–1716) создал «ступенчатый вычислитель» – счетную машину, позволяющую складывать, вычитать, умножать, делить, извлекать квадратные корни. При этом использовалась двоичная система счисления. Это был более совершенный прибор, в котором использовалась движущаяся часть (прообраз каретки) и ручка, с помощью которой оператор вращал колесо. Изделие Лейбница постигла печальная судьба предшественников: если им кто-то и пользовался, то только домашние Лейбница и друзья его семьи, поскольку время массового спроса на подобные механизмы еще не пришло. Машина являлась прототипом арифмометра, который был востребован с 1820 года до 60-х годов ХХ века.
Переход к современной математике
Успехи Кеплера в расчете пройденного планетой пути по известной скорости ее движения, о чем мы говорили в одной из предыдущих главок, стали первым шагом в новой науке – интегральном исчислении. Сам Кеплер воспринимал его просто: как способ вычисления площади фигуры, ограниченной плоской кривой, либо объема тела, ограниченного данной поверхностью. В 1615 году он опубликовал книгу со странным названием: «Новая стереометрия винных бочек, по преимуществу – австрийских». Это был первый сборник задач на вычисление интегралов; он содержал около ста разных примеров с подробными решениями.
Одна строчка в таблице интегралов от функций соответствует огромной таблице логарифмов чисел! Из этого видно, что для будущей математики исчисление функций гораздо важнее привычной арифметики и алгебры чисел. В новом мире функций, кроме арифметики и алгебры, действуют особые операции. Первые две из них – проведение касательной прямой к данной кривой и вычисление площади, которую ограничивает кривая, – угадал еще Архимед. Теперь Кеплер разработал удобную технику решения второй задачи. Но исчислять кривые так же просто и непринужденно, как числа, Кеплер не умел. Революцию в этом ремесле произвел в 1637 году другой великий математик, француз Рене Декарт.
В отличие от Кеплера, Декарт не любил долгих расчетов. Он предпочитал наглядно-геометрические рассуждения и хотел работать этим методом с любыми сложными кривыми, а не только с прямыми и окружностями, как делал Евклид. Для этой работы полезно уметь складывать, вычитать и умножать кривые между собой так же, как мы это делаем с числами.
Пьер Ферма из Тулузы (1601–1665) по основной профессии был юристом, а математикой занимался на досуге, читая книги классиков или современников и размышляя о тех задачах, которые те не заметили или не сумели решить. Понятно, что при таком способе работы Ферма ни в одной области науки не был первым. В математический анализ он вошел вслед за Архимедом и Кеплером, в аналитическую геометрию – вслед за Декартом, в теорию вероятностей вслед за Паскалем, а в теорию чисел – вслед за Диофантом. Но в каждом случае Ферма добавлял в уже готовую или только рождающуюся науку столь важные открытия, что превзойти его результаты могли только гении, порою много десятилетий спустя.
Например, Ферма заинтересовался простой задачей: при каких условиях функция достигает минимума или максимума в данной точке? Оказалось, что необходимо простое условие: производная от функции в этой точке должна быть равна нулю. В наши дни этот факт известен каждому старшекласснику. Но Ферма, распространив свое открытие на функции, зависящие от многих переменных, пришел к замечательному физическому открытию: свет движется по траектории, на которой производная по времени равна нулю. Значит, время движения света вдоль этой траектории – минимальное!
Лишь сто лет спустя Пьер Мопертюи и Леонард Эйлер открыли аналог принципа Ферма в механике; это стало первым шагом к объединению механики с оптикой в рамках квантовой теории.
Теорию чисел Ферма строил почти в одиночестве; из всех его современников только англичанин Джон Валлис интересовался ею. Но Ферма имел важное преимущество перед Валлисом и перед своим античным предшественником, Диофантом. Он хорошо знал аналитическую геометрию и оперировал уравнениями так же свободно, как числами. Поэтому он легко доказал «малую теорему Ферма» и узнал, что существуют конечные поля вычетов – системы чисел, устроенные (в смысле арифметики) еще удобнее, чем множество целых чисел.
Развивая этот успех, Ферма заинтересовался пифагоровыми тройками чисел, целыми решениями уравнения (хn + уn = zn). Существуют ли целые решения уравнений (хn + уn = zn) при n › 2? Диофант не нашел ни одного решения для n = 3. Ферма доказал, что таких решений не может быть. Оставалось обобщить метод Ферма для других простых показателей: 5, 7, 11… К сожалению, Ферма не стал проводить в этих случаях подробные расчеты и поэтому не увидел удивительных алгебраических препятствий на своем пути. Например, при n = 5 необходимо использовать комплексные числа: это первым заметил в конце XVIII века Адриен Лежандр, а Ферма всю жизнь сомневался в полезности таких чисел! Далее, при n = 23 доказательство «большой теоремы Ферма» натолкнулось на неоднозначное разложение комплексных чисел определенного вида на простые множители. Эту новую революцию в алгебре вызвал Эрнст Куммер в середине XIX века.
Не было тогда научных журналов для публикации новых открытий; все крупные ученые Европы узнавали о новых достижениях своих коллег из взаимной переписки. Они регулярно сообщали всем своим корреспондентам о том, какие факты открыли их далекие коллеги. Если новый факт привлекал чье-то внимание, то от автора требовали письменного доказательства. В противном случае сообщение повисало в воздухе.
Такой «любительский» стиль коллективной работы в науке был неизбежен и даже удобен, пока во всей Европе одновременно работали два-три десятка крупных ученых. Как только их стало больше – общую работу пришлось организовать с помощью научных учреждений.
- Предыдущая
- 99/178
- Следующая
