Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Пространство, время и движение. Величайшие идеи Вселенной - Кэрролл Шон - Страница 5
В классической механике сохраняются и импульс, и энергия. Однако кинетическая энергия сама по себе не сохраняется, поскольку может переходить в другие формы энергии (или возникать из них). При стрельбе из лука энергия, накопленная при натяжении тетивы, переходит в кинетическую энергию стрелы.
(window.adrunTag = window.adrunTag || []).push({v: 1, el: 'adrun-4-144', c: 4, b: 144})В простых обстоятельствах мы можем напрямую проследить, как энергия переходит из одной формы в другую. Физики любят приводить в пример шар, который катится по холму, где, как мы представляем, нет ни трения, ни сопротивления воздуха. Поднятый на высоту, шар обладает потенциальной энергией. На высоте h она будет равна:
(1.4)Здесь m — масса шара, а g — ускорение, обусловленное силой тяжести вблизи поверхности Земли (или другой планеты, где проводится эксперимент). Численно g ≈ 9,8 метра в секунду за секунду, то есть скорость падающего предмета (без учета сопротивления воздуха) каждую секунду увеличивается на 9,8 метра в секунду. Таким было бы ускорение, даже если бы не было холма.
Когда шар катится с холма, его суммарная энергия Екинетич. + Епотенц. остается постоянной. При этом энергия переходит из одной формы в другую. Например, если шар поместить на склон, он покатится вниз. Его кинетическая энергия будет расти ровно настолько, насколько потенциальная энергия — уменьшаться.
Легко увидеть, как потенциальная и кинетическая энергии превращаются друг в друга. Другие формы энергии менее очевидны. Мы уже говорили о бильярдных шарах. Физики любят, когда они движутся по поверхности без трения, а при столкновении не издают звука, не выделяют тепла. При этом импульс и кинетическая энергия шаров полностью сохраняются: они просто отскакивают друг от друга. Такие столкновения называются упругими (возможно, вам говорили о таких на уроках физики).
Бывают и неупругие столкновения, при которых импульс сохраняется, но кинетическая энергия переходит в другую форму. Столкнем вместо бильярдных шаров два комка глины. Если в начальный момент их импульсы равны и направлены друг против друга, то есть
, то при столкновении комки немного деформируются и слипнутся, образовав один неподвижный ком. Суммарный импульс не изменился, а кинетическая энергия — да. Она перешла в тепло и механическое напряжение.Раньше ученые, в том числе и сам Ньютон, не до конца понимали, что импульс и энергия — разные вещи. Они полагали, что существует некая единая величина — «количество движения». Несложно объяснить, что такое импульс, в терминах механики Ньютона, в основе которой — прямолинейное и равномерное движение объектов, не подвергающихся воздействию сил. С энергией все не так просто. Впрочем, попытки были. Например, Готфрид Вильгельм Лейбниц (соперник Ньютона в области высшей математики) предложил новую величину — «vis viva», — которую он определил как mv2 и полагал важной для изучения движения.
Ситуацию прояснила Эмили дю Шатле — философ и физик из Франции, известная переводами книг Ньютона. Считая энергию независимой от импульса, но также сохраняющейся величиной, она провела опыт, задуманный голландским ученым Вильгельмом Гравезандом. Если бросить тяжелый шар в мягкую глину, он ожидаемо остановится в ней, полностью передав свой импульс земле. При этом в глине появится лунка, объем которой, как оказалось, зависит от квадрата скорости шара в момент удара, то есть от кинетической энергии. Именно ее шар и тратит на то, чтобы сделать лунку.
Возможно, вы слышали о «законе сохранения массы». Его считали верным, пока не появилась теория относительности. Согласно этой теории, импульс и энергия сохраняются (хотя их формулы несколько отличаются от написанных выше), масса же представляет собой особую форму энергии. В этом и заключается смысл знаменитого уравнения Эйнштейна — энергия неподвижного объекта (то есть при нулевой кинетической энергии) равна его массе, умноженной на квадрат скорости света:
(1.5)Если для обычных тел закон сохранения массы можно считать достаточно точным приближением, то для частиц, скорость которых близка к скорости света, он не работает. Говоря о таких частицах, следует мыслить в терминах сохранения энергии[3].
Почему существуют законы сохранения?
Ученые любят задавать вопросы. Мы хотим знать, почему яблоки падают с деревьев, почему кофе и сливки смешиваются, почему горит и гаснет огонь, но часто при этом находим ответы, которые порождают новые вопросы. Нужно всегда быть готовыми к тому, что цепочка однажды прервется, и мы услышим в ответ: «Так есть, потому что так есть». И с этим уже ничего не поделать.
Так было и с законами сохранения. Однако, к счастью, в начале XX века была доказана теорема, которая установила связь этих законов с симметрией в природе. К такому замечательному выводу пришла Эмми Нётер, математик из Германии. Симметрия — это преобразование, которому может подвергнуться система при полном сохранении основных характеристик. Например, круг полностью симметричен относительно центра. Поэтому его можно повернуть на любой угол без внешних изменений. А вот квадрат сохраняет свой внешний вид только при повороте на угол, кратный 90°.
Теорема Нётер гласит, что любое плавное преобразование непрерывно симметричной системы связано с сохранением некоторой величины. Например, законы физики в целом симметричны при сдвигах в пространстве и времени. Мы можем провести опыт на одном месте, а затем повторить на другом, немного подождать и снова повторить. И мы получим один и тот же результат во всех этих случаях. Теорема Нётер связывает такую симметрию с уже известными нам законами сохранения. Неизменность при сдвигах в пространстве приводит к сохранению импульса, а при сдвигах во времени — к сохранению энергии. При этом важна размерность симметрии. Время одномерно, поэтому сохраняется лишь одна величина: энергия. Пространство трехмерно, мы можем перемещаться в любом из трех направлений. Поэтому импульс является вектором, который можно разложить на три компонента, по одному на каждое направление. В системах, где что-то вращается вокруг какой-то оси, появляется еще одна сохраняемая величина: момент импульса.
Рассматривая сдвиги в пространстве, сдвиги во времени и вращения, при которых система претерпевает пространственно-временные изменения, мы говорим о симметрии пространства-времени. В физике частиц и квантовой теории поля, которая изучает взаимодействие полей и их частей, существует понятие внутренней симметрии. Из-за нее сохраняются электрические заряды и другие свойства частиц.
Но есть одна важная тонкость. Кажущаяся нам симметрия законов физики нарушается, когда мы сами находимся внутри какой-то реальной системы. Например, Вселенная расширяется. Галактики постепенно отдаляются друг от друга, и в будущем расстояние между ними станет больше, чем было когда-то. Но если Вселенная изменяется при сдвигах во времени, значит, ее энергия не сохраняется. Если мы посчитаем суммарную энергию во всех известных нам формах материи (излучение, обычная материя, темная материя, темная энергия и т. д.), получится число, которое будет меняться со временем. Можно попробовать обойти этот факт, определив энергию в кривизне самого пространства-времени. Пока что такие попытки не дали нам положительных результатов. Поэтому нет ничего страшного в том, чтобы вычислить суммарную энергию «области пространства» или «всех объектов в какой-то области» и признать, что она не является постоянной.
- Предыдущая
- 5/55
- Следующая
