Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Пространство, время и движение. Величайшие идеи Вселенной - Кэрролл Шон - Страница 39
Геодезические линии
В начале главы 3 мы думали, как провести прямую линию между двумя деревьями. Можно натянуть между ними веревку, а можно просто идти от одного к другому. В обоих случаях мы получим одну и ту же прямую. Все то же самое можно проделать и на любом искривленном многообразии в геометрии Римана, хотя построенная линия вряд ли будет прямой. К примеру, на сфере мы получим большой круг или его дугу.
(window.adrunTag = window.adrunTag || []).push({v: 1, el: 'adrun-4-144', c: 4, b: 144})Линия между двумя точками, при движении по которой мы проходим минимальное расстояние (или затрачиваем максимум собственного времени, если речь идет о пространстве-времени), называется геодезической. Такие линии описываются формулами (см. приложение Б), которые можно вывести примерно так же, как делалось в главе 3 при обсуждении принципа наименьшего действия. Тогда мы говорили о пространстве путей, по которым может пройти частица, связывали с каждым из них какое-то количество действия и находили такой, на котором оно минимально (а производная действия в пространстве путей равна нулю). При поиске геодезических линий мы будем действовать точно так же, но вместо действия будем минимизировать длину кривой.
Геодезическая линия — это не только кратчайший путь: она во всех отношениях ведет себя, как прямая. Например, при движении по ней работает параллельный перенос вектора. Рассмотрим траекторию, которая представляет собой последовательность точек с параметром, позволяющим определить местоположение вдоль нее. Например, мы можем использовать формулу xi(t), где xi — координаты в соответствующем количестве измерений (сколько бы их ни было), а t — параметр, определенный вдоль траектории. (Часто таким параметром действительно служит время, но здесь буква t лишь удобное обозначение.) Тогда можно определить вектор скорости vi = dxi/dt, который направлен по касательной к траектории по ходу движения. Его длина показывает, как быстро мы перемещаемся.
А что значит «сохранять направление движения»? Это когда положение вектора скорости относительно траектории не изменяется, то есть осуществляется параллельный перенос этого вектора. Поэтому можно дать еще одно определение геодезической линии: это путь, при движении по которому вектор скорости остается параллельным начальному вектору скорости. Выходит, что параллельный перенос вектора связан с метрическим тензором: кривые, на которых возможен параллельный перенос, имеют минимальную длину.
Кривизна
Итак, к чему мы пришли? Метрический тензор — самая базовая геометрическая структура многообразия. Он позволяет определять длины траекторий, находить площади и объемы многомерных областей пространства и вычислять скалярные произведения векторов. Он говорит нам, как выполнять параллельный перенос векторов вдоль кривой: мы выяснили, что для этого нужны геодезические линии — кратчайшие пути между точками. Именно параллельный перенос позволит нам сложить последнюю часть головоломки: полностью кривизну пространства.
Сфера и гиперболическая плоскость — это самые простые искривленные многообразия, кривизна которых одинакова во всех точках и направлениях. Для более сложных случаев хотелось бы придумать способ надежно определять кривизну в любой точке многообразия. Мы уже поняли, что метрика не слишком подходит для этой цели, поскольку зависит от выбранной системы координат и при одной и той же геометрии может быть проще или сложнее. Нужная нам величина (возможно, тензор) должна однозначно показывать кривизну пространства и принимать нулевое значение при ее отсутствии.
При параллельном переносе вектора по двум разным траекториям итоговый вектор не совпадает с исходным. Мы уже видели это на примере сферы, когда переносили вектор с экватора на полюс. Аналогичным образом, если начать движение с полюса, дойти до экватора, переместиться вдоль него, а затем вернуться на полюс, направление вектора также изменится. Это очень важный момент: параллельный перенос по замкнутому контуру, как правило, не позволяет сохранить исходный вектор. По крайней мере в искривленных пространствах.
Мы можем использовать это наблюдение для оценки кривизны: на плоских множествах при параллельном переносе по замкнутому контуру вектор сохраняет направление, на искривленных — отклоняется на какой-то угол.
Однако проблема в том, что замкнутых контуров очень много и описать поведение векторов на них едва ли реально. Поэтому мы должны выбрать какой-то ограниченный набор характерных контуров, которые несложно описать в численном виде.
И здесь нам на помощь придет уже ставший привычным прием: мы будем мыслить бесконечно малыми величинами и применять высшую математику. Такой подход к изучению пространств с произвольной кривизной называется дифференциальной геометрией.
Представим себе два вектора,
и , исходящие из одной точки p. Начиная из этой точки, сместимся на бесконечно малое расстояние в направлении , а затем на бесконечно малое расстояние в направлении . (Технически мы перемещаемся на расстояние, пропорциональное длине этих векторов.) После этого мы вернемся в исходную точку, сначала сместившись в направлении, обратном , а затем в направлении, обратном . Таким образом мы получили бесконечно малый замкнутый контур, который имеет форму параллелограмма[23].Чтобы определить такой контур, не требуется много данных: нужны всего два вектора и точка. Чтобы измерить кривизну, возьмем еще один, третий вектор
, который также исходит из начальной точки. В результате параллельного переноса по контуру мы получим новый вектор . На плоском многообразии старый и новый векторы совпадут: , на искривленном же будут немного отличаться друг от друга. Поэтому мы можем найти их разность:(7.20)
Именно так мы будем определять кривизну в любой точке произвольного многообразия. Построив контур при помощи двух векторов и выполнив параллельный перенос третьего вектора, мы получим итоговый вектор, который покажет нам, как сильно искривлено пространство. На почти плоских множествах он будет очень мал, на сильно искривленных — относительно велик.
Иными словами, мы получили отображение множества из трех векторов
на четвертый вектор, . Мы уже знаем, что такие отображения называются тензорами. В данном случае перед нами тензор кривизны Римана: на его вход поступают два вектора, определяющие контур, и вектор для параллельного переноса, на выходе образуется четвертый вектор, который показывает кривизну на этом контуре.Можно подумать, что вычислять изменение вектора, циркулирующего по контуру в каждой точке пространства, — громоздкая и сложная задача. Но нам на помощь приходит «магия» тензоров. Представим все вектора в виде их компонентов: Ui, Vi и т. д. Число компонентов i равно размерности исследуемого многообразия.
- Предыдущая
- 39/55
- Следующая
