Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Семихатов Алексей - Страница 9
Возвращаясь к энергии, состоящей из двух враждующих частей и ставшей поэтому не числом, а операцией: вражда между двумя ее частями в полной мере разворачивается при наличии притяжения между атомным ядром и электроном, потому что притяжение зависит от расстояния, т. е. в общем от положения в пространстве, в то время как энергия движения зависит от скорости. Две «конфликтующие стороны» преобразуют математические состояния очень по-разному: когда одна сторона вызывает незначительные изменения, другая «назло» – очень существенные, и наоборот. Энергия в результате становится в математическом пространстве свирепым преобразователем, от которого (почти) никому нет спасения.
Такая беда с энергией «мешает» существованию атома, поскольку энергия изолированного атома не должна меняться со временем (иначе с атомом что-нибудь происходит), а для этого уж во всяком случае обязана иметь какое-то численное значение!
«Мешает» действительно настолько сильно, что собрать атом из ядра и электронов невозможно почти никогда – за исключением специальных случаев «примирения». Оно наступает, если среди математических состояний, подвергаемых преобразованиям, найдется такое, что две враждующие части энергии, действуя совместно, почти его не изменяют. Что означает «почти», сказано в следующем абзаце, а случиться подобное может, только если энергия каждого электрона принимает одно из специальных (численных) значений.
Список разрешенных значений энергии возникает как условие «примирения» враждующих вкладов в энергию электрона в атоме в исключительных случаях. Для этого необходимо, чтобы существовал специальный математический объект, которому удается почти не меняться под действием энергии как операции, а именно, отделаться просто умножением на число. (Это и правда мягкий вариант изменения; в качестве бытового примера можно сравнить изменение текста из-за того, что размер всех шрифтов в нем умножен на некоторое число, с пропусканием страниц через шредер.) Появляющееся таким образом число и становится энергией электрона в атоме. Так формируется весь список энергий, при которых только и может существовать атом, – и возникает дискретность, которую мы обсуждали в предыдущей главе.
Для сравнения, у электрона, свободно летящего в пространстве, никакой дискретности нет; его энергия целиком сводится к энергии движения. Она выражается только через скорость, враждовать ей в данном случае не с кем, и никаких отдельных разрешенных значений энергии движения не возникает. Дискретно многое, но не всё.
В истории создания квантовой механики можно при желании усмотреть символизм, перекликающийся с характерной для нее самой «враждой», т. е. наличием несовместимых величин. Поначалу такими же несовместимыми выглядели две идеи, высказанные двумя разными людьми, но при этом – несмотря на кажущуюся непримиримость самих идей и приближающиеся к враждебным отношения между их авторами – вместе составившие основу квантовой механики.
Противостоящие одна другой идеи принадлежали Гайзенбергу (которого немало вдохновлял Бор) и Шрёдингеру (которого вдохновляло нечто иное).
Создатели нового описания мира пришли к осознанию, что структуру атома нельзя постичь, распространяя на него привычные модели и полагаясь на интуицию и «само собой разумеющиеся» факты. Все, что «само собой разумеется», – обобщение опыта, накопленного в классическом мире, и сколь бы естественными ни казались нам некоторые вещи, их нельзя переносить в квантовый мир без абсолютной необходимости. Рассуждения без привлечения «само собой разумеющегося» требовали немалой дисциплины мышления, и первым тут достиг успеха Гайзенберг (июнь 1925 г.). Он смог сформулировать правила описания квантовых объектов, очень строго следя за тем, чтобы иметь дело только с тем, что можно было в принципе извлечь из экспериментов, и не привнося никаких «самоочевидных» идей. Электрон в атоме, по Гайзенбергу, вел существование, привязанное только к переходам между дискретными значениями энергии – только тогда он заявлял о себе, излучая или поглощая порцию света определенной длины волны. Гайзенберг создал целую систему для обращения с дискретными величинами вместо обычных непрерывных. На ее основе удалось вычислить – математически вывести – энергетические ступеньки (разрешенные значения энергии) в атоме водорода.
(window.adrunTag = window.adrunTag || []).push({v: 1, el: 'adrun-4-390', c: 4, b: 390})Атом был «спасен»: электрон не оказывался в объятиях атомного ядра, отдав всю свою энергию в виде света (проблема, о которой мы говорили в главе 2), потому что в списке разрешенных значений имелась наименьшая энергия. С нее начинается список, и электрону, который ее приобрел, просто «некуда бежать», отдавая энергию.
Формализм получился достаточно громоздкий, но это тем не менее был колоссальный прорыв. Дискретность присутствовала в нем с самого начала, и самой существенной способностью электрона в атоме оказывалась способность совершать «скачки» между разрешенными значениями энергии. Происходящее же между скачками представлялось неважным; говорить о нем даже и не следовало: в условиях недоступности прямого наблюдения ему приписывалось не совсем полноценное существование.
Справедливости ради надо сказать, что эти отчасти философские идеи о характере существования электронов в атоме добавились к математическому аппарату не сразу и заведомо не одновременно с написанием правильных формул, позволявших делать вычисления. Возможность вычислять была на первом месте, и согласие результатов с наблюдениями служило обоснованием формул. Формулы тем не менее все же несли в себе вопрос о своем смысле. Идеи по их интерпретации набирали силу в течение нескольких лет, и существенную роль тут сыграл старший коллега и до некоторой степени наставник (очень молодого тогда) Гайзенберга – Бор. Он же взял на себя роль «разъяснителя» свойств квантового мира и наших отношений с ним для научного сообщества. Именно отношения исследователя и природы все больше выходили на передний план, тогда как физическому миру «самому по себе» Бор отказывал в полноценном существовании; обсуждать следовало лишь то, что можно наблюдать, поэтому далеко не про все в квантовом мире имеет смысл спрашивать и не всему разумно искать «объяснения»{11}.
Совсем другую идею по поводу того, как описывать квантовые явления, примерно с полугодовым отставанием от Гайзенберга высказал Шрёдингер. Он предложил (рубеж 1925 и 1926 гг.) непрерывную схему описания квантовых явлений вообще. На первый взгляд, согласно идеям Шрёдингера, квантовые объекты слагались из чего-то типа разлитых в пространстве волн – которые решительно не испытывали никаких скачков, а эволюционировали с течением времени по закону, который Шрёдингер же и сформулировал (исключительно удачно придумал) и который превратился затем в основное вычислительное средство квантовой механики под названием уравнения Шрёдингера.
Начал Шрёдингер тоже с того, что применил свое уравнение для математического вывода разрешенных значений энергии в атоме водорода (и с тех пор все тоже так поступают). Однако в его подходе было гораздо яснее, как действовать – по крайней мере, как записать нужные уравнения – и для более сложных атомов. Математические «чудеса», благодаря которым из непрерывного (чего-то типа волны) получалось дискретное (энергетические ступеньки, согласующиеся с экспериментом), были красивы и содержательны (свирепая энергия все-таки производит определенное число, действуя на очень специальный математический объект, как вкратце обсуждалось выше).
Однако не все шло гладко. Очень быстро выяснилось, что с задачей стать «материалом» для построения квантовых объектов эти вроде-бы-волны не справляются. Фундаментальная причина состояла в том, что они в действительности не бегают по пространству таким образом, что каждому квантовому объекту отвечает своя волна. Это обстоятельство глубже и сложнее, чем может показаться на первый взгляд. Да, в числе мотиваций самого Шрёдингера была идея, что объекты, считающиеся частицами (электроны), проявляют волновые свойства. Эту идею несколько ранее высказал де Бройль, а немного позднее, в 1927 г., она стала экспериментальным фактом. Но при этом не верно, что в системе из нескольких электронов каждый представлен своей волной. Ничего подобного в схеме, предложенной Шрёдингером, нет. Там необходимо сразу указать столько точек в пространстве, сколько у вас электронов, и только тогда будет математически определена «величина» (амплитуда) этой вроде-бы-волны – и относиться она будет ко всем электронам, вместе взятым. Связь с событиями в отдельных точках физического пространства при этом теряется.
- Предыдущая
- 9/61
- Следующая
