Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Простое начало. Как четыре закона физики формируют живой мир - Партасарати Рагувир - Страница 4


4
Изменить размер шрифта:

Наше биофизическое исследование структур и механизмов жизни начинается с ДНК – молекулы знакомой, даже культовой, но абстрактной во многих встречаемых нами описаниях. На протяжении нескольких глав мы будем изучать, как инструкции прописываются в ДНК, рассматривая белки, гены и сети взаимосвязей между ними. За последние десятилетия представления ученых о том, как из этих компонентов составляются и сами сообщения, и инструменты для чтения сообщений, сильно расширились, и мы продолжаем, образно говоря, распутывать хитросплетения ДНК. Сравнительно недавно удалось разработать головокружительные способы вмешательства в закодированную в ней информацию, правда, исходы таких вмешательств мы в полной мере еще не представляем (см. часть III). В этой главе мы сосредоточимся на самой ДНК, что сразу же позволит прочертить связи между биологией и физикой, а также между наукой и технологиями.

Четыре образа ДНК

ДНК – это не просто сборник абстрактных инструкций, а оформленное и структурированное вещество, физические свойства которого тесно связаны с его функциями. Что же представляет собой это вещество? Твердое оно или жидкое, жесткое или гибкое, плотно уложенное или рыхло? ДНК многогранна, и можно фокусироваться на разных ее аспектах в зависимости от того, что именно нас интересует. Давайте посмотрим на ДНК с четырех ракурсов.

1. ДНК – это бесцветная слизь. Мы можем подержать ДНК в руках и рассмотреть невооруженным глазом. Это несложно: с помощью блендера и простейших бытовых химикатов мы можем извлечь ДНК, скажем, из клубники или зеленого горошка. Рецепт примерно таков: измельчите фрукты или овощи блендером – так вы оторвете их клетки друг от друга. Добавьте в полученную массу моющее средство, чтобы растворить клеточные мембраны. Капните немного приправы для размягчения мяса или ананасового сока – там содержатся ферменты, расщепляющие белки. Теперь ДНК – единственный клеточный компонент, оставшийся невредимым. Добавьте медицинский спирт, который растворит фрагменты белка, но ДНК не тронет. ДНК соберется в длинные нити, которые можно вытянуть зубочисткой, – так мы получим мутно-белый волокнистый сгусток. Это и есть ДНК. Выглядит она так себе. Однажды извлечение ДНК на практикуме даже довело меня до слез. Дело, однако, было в том, что я совершил ужасную ошибку, выбрав в качестве исходного сырья для опыта лук – субстанцию удобно бесцветную, но страшно режущую глаз.

2. ДНК – это закодированное сообщение. На другом полюсе осязаемости находится ДНК в образе абстрактного, закодированного четырьмя символами сообщения. Эти символы принято обозначать буквами – A, T, Ц, Г, – но с нашей задачей справятся и четыре разноцветных квадратика. Та или иная последовательность символов кодирует информацию о том, как вашим клеткам строить то, что им необходимо строить, и делать то, что им необходимо делать. Сколько же информации способна вместить ДНК? Давайте сравним этот объем с объемом цифровой информации, хранящейся в переносном музыкальном плеере. Сегодня мы привыкли к «битам» и «байтам» – единицам информации. Бит (от англ. binary digit, двоичная цифра) – это любой сигнал, который может принимать лишь два значения: да или нет, 0 или 1, север или юг у магнита. Флешка емкостью 1 гигабайт содержит около 8 миллиардов бит информации: «гига» значит «миллиард», а байт состоит из восьми бит. Ее содержимое можно записать как определенную последовательность нулей и единиц (…01110100110010100011011101000011011100011010011…). А сколько же бит в последовательности ДНК каждого человека? Наша ДНК состоит из 3 миллиардов символов, то есть из 3 миллиардов A, T, Ц и Г. Чтобы перевести каждый символ в двоичный код, мы могли бы составить словарь, такой например:

(window.adrunTag = window.adrunTag || []).push({v: 1, el: 'adrun-4-390', c: 4, b: 390})

00 = A

01 = T

10 = Ц

11 = Г

Последовательность ATTГЦ соответствовала бы 0001011110. Следовательно, в нашем геноме, состоящем из 3 миллиардов символов, содержится 6 миллиардов бит информации – это меньше гигабайта и, вероятно, заняло бы лишь малую часть памяти телефона, лежащего у вас в кармане. И вот загадка: при таком заметном дефиците информации во мне я кажусь гораздо более сложным, чем мой телефон! На страницах этой книги мы часто будем сталкиваться с концепцией сложности. Пока же нас интересует более насущный вопрос: как эта абстрактная картина с кодами и информацией соотносится с изображенным выше волокнистым сгустком?

3. ДНК – это молекула. Как и все молекулы, ДНК состоит из атомов – в ее случае из атомов углерода, водорода, кислорода, азота и фосфора, удерживаемых химическими связями. Четырьмя символами кода, упомянутыми выше, обозначают четыре специфических композиции атомов, называемые нуклеотидами (нуклеозидфосфатами)[6]. Они сшиты друг с другом в длинную цепь – молекулу ДНК. На рисунке ниже кружочками показаны все атомы аденозинмонофосфата (А), черными линиями обозначены химические связи. (Чтобы не перегружать рисунок, я решил пренебречь слишком уж многочисленными атомами водорода.) Ниже этой структуры я изобразил атомы четырехнуклеотидной последовательности AЦTГ, а многоточиями обозначил места, где этот фрагмент присоединялся бы к соседним нуклеотидам, входи он в состав более длинной нити. Определения последовательности нуклеотидов в цепи вполне достаточно, чтобы идентифицировать молекулу ДНК: сокращение AЦTГ, например, в точности соответствует структуре из атомов, которую я нарисовал, и не может относиться ни к какому другому набору атомов.

4. ДНК – это двойная спираль. Взаимодействия атомов определяют строение молекулы, а строение молекулы обусловливает ее функцию. Любой из четырех нуклеотидов – A, T, Ц, Г – может быть связан с любым другим для формирования одной нити ДНК. Но нуклеотиды также взаимодействуют, хоть и слабее, между нитями, причем весьма характерным образом: A связывается исключительно с T, а Ц – с Г. (Мы говорим, что нуклеотиды в этих парах комплементарны друг другу.) Одна нить ДНК – например, AГЦЦTATГA – связывается со своей комплементарной нитью TЦГГATAЦT[7]. На рисунке ниже показаны атомы ДНК, сформированной из нити AЦTГ и комплементарной ей TГAЦ; тонкими пунктирными перемычками там обозначены межнитевые связи[8]. Благодаря межатомным взаимодействиям нити ДНК, как плющ, обвивают друг друга, образуя двойную спираль. Этот рисунок вторит утрированному «портрету» двойной спирали, который мы видели бесчисленное множество раз: плавно изогнутые ленты и упорядоченные точки призваны чисто схематически передать куда более сложные расстановки атомов и связей, существующие в трехмерном пространстве.

Каноническая двойная спираль ДНК не только изящна, но и функциональна. Две комплементарные нити содержат избыточную информацию: если я сообщу вам последовательность нуклеотидов в одной нити, вы будете знать и последовательность в другой, поскольку каждый нуклеотид комплементарен своему партнеру. Эта избыточность показывает, как информация может переноситься при делении из одной клетки в две дочерние: ДНК «расстегивается», словно молния, и после этого синтезируется комплемент для каждой из исходных цепей, в результате чего из одной двойной спирали ДНК получаются две.

Структуру двухцепочечной ДНК в 1953 году вычислили Джеймс Уотсон и Фрэнсис Крик, опираясь на великолепные рентгеновские снимки Розалинд Франклин и ее студента Рэймонда Гослинга. (Это увлекательная история, полная гениальных прозрений и трагичных этических упущений, но она прекрасно рассказана в других источниках3.) Прежде никто не знал, как выглядят молекулы ДНК. Весомее прочих выглядела гипотеза Лайнуса Полинга, одного из ведущих исследователей химических связей: он предполагал, что ДНК формирует трехнитевое перекрученное волокно (тройную спираль). После открытия двойной спирали стало ясно, как структура ДНК обеспечивает передачу генетической информации: путем копирования комплементарных цепей. Однако другие следствия такого строения ДНК не столь очевидны, и мы до сих пор продолжаем изучать ее загадки.