Вы читаете книгу
Лягушка в кипятке и еще 300 популярных инструментов мышления, которые сделают вас умнее
Макканн Лорен
Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Лягушка в кипятке и еще 300 популярных инструментов мышления, которые сделают вас умнее - Макканн Лорен - Страница 43
Но насколько точна эта меньшая вероятность? Зависит от того, сколько человек вы опросите.
Чем больше будет опрошенных, тем выше будет распределение. Чтобы передать эту информацию, такие опросы обычно указывают погрешность.
Статья, описывающая результаты опроса, может включать подобный текст: «Рейтинг одобрения Конгресса составляет 24 % с погрешностью ±3 %»[66]. Эти «±3 %» и есть предел погрешности, но откуда берется эта погрешность и что это вообще такое, редко объясняют. Теперь вы знаете!
На самом деле допустимая погрешность – это тип доверительного интервала, приблизительного ряда чисел, которые, по вашему мнению, включают в себя истинное значение изучаемого параметра, например рейтинга одобрения. Этот диапазон обладает соответствующим уровнем доверия тому, что истинное значение параметра входит в интервал, который вы приблизительно вычислили. Например, уровень доверия 95 % подразумевает, что если вы проведете опрос много раз и подсчитаете много уровней доверия (по одному для каждого опроса), в среднем 95 % из них будет включать себя истинный рейтинг одобрения (то есть 25 %).
В большинстве сообщений СМИ не упоминают уровень доверия для вычисления погрешности, но обычно можно предположить 95 %. Напротив, в научных публикациях куда яснее пишут, какой уровень доверия был взят, чтобы показать неопределенность подсчетов (опять же, как правило, хоть и не всегда, это 95 %).
Для оценки рейтинга одобрения этот диапазон вычисляется с учетом центральной предельной теоремы: норма выборки приблизительно нормально распределена, поэтому следует ожидать, что 95 % возможных значений окажется в пределах двух отклонений от стандарта истинной нормы (то есть истинного рейтинга одобрения).
До сих пор мы не объяснили, что отклонение от стандарта в этом распределении, которое также называется стандартной ошибкой, не равно отклонению от стандарта выборки, о котором мы говорили ранее. Однако эти две величины напрямую связаны. В частности, стандартная ошибка равна отклонению от стандарта выборки, поделенному на квадратный корень размера выборки.
Это означает, что если вы хотите уменьшить погрешность в два раза, вам нужно увеличить размер выборки в четыре.
Для опроса «да/нет», как в рейтинге одобрения, погрешность 10 % при опросе 96 человек, 5 % – 384 человек, 3 % – 1067 человек и 2 % – 2401 человека. Поскольку предел погрешности выражает уверенность организаторов опроса в их подсчетах, логично, что он напрямую связан с размером выборки.
Иллюстрация ниже показывает, как доверительные интервалы работают для повторных экспериментов. На ней изображены 100 доверительных интервалов со значением 95 % для вероятности выбросить решку. Каждый был рассчитан из эксперимента, который включал симуляцию броска симметричной монеты сто раз. Эти доверительные интервалы графически представлены в виде «усов», которые визуально отображают показатель неопределенности при подсчетах.
«Усы» не всегда являются доверительными интервалами. Их можно получить и из других расчетов погрешности. Точка по центру «уса» – это приблизительное вычисление параметра, в данном случае норма выборки, а линии на его концах обозначают максимум и минимум числового диапазона, в данном случае доверительный интервал.
«Усы» на графике варьируются в зависимости от того, что показали разные эксперименты, но каждый охватывает диапазон около 20 %, что соответствует ±10 %, упомянутым выше (когда размер выборки – одна сотня бросков). Учитывая уровень доверия 50 %, можно ожидать, что 95 этих доверительных интервалов будут включать в себя истинную норму в размере 50 %. В данном случае 93 интервала включают в себя 50 % (7 интервалов, не включившие в себя эту величину, выделены черным).
Доверительный интервал со значением 95 % для 100 бросков симметричной монеты
(window.adrunTag = window.adrunTag || []).push({v: 1, el: 'adrun-4-390', c: 4, b: 390})Такие доверительные интервалы часто используются для вычисления разумных значений параметра, такого как вероятность выбросить решку. Но, как вы только что видели, истинная норма параметра (в данном случае 50 %) иногда выходит за рамки доверительного интервала. Нужно понимать, что доверительный интервал – это не диапазон всех возможных величин и истинная величина необязательно будет входить в него.
Нас очень беспокоит, когда статистические данные публикуются в СМИ без упоминания погрешностей или доверительных интервалов. Не забывайте искать их, когда читаете отчеты, и включайте их в собственную работу. Без оценки погрешности вы не поймете, насколько можно верить этому числу – будет ли истинная величина действительно близка к нему или, может быть, очень от него далека? Это вам подскажет доверительный интервал!
Все относительно
В предыдущем разделе мы написали, что средний рост женщины составляет 5 футов 4 дюйма. Если вам нужно угадать рост случайного незнакомца, но вы не знаете наверняка, что это женщина, не стоит называть 5 футов 4 дюйма, потому что средний мужской рост ближе к 5 футам 9 дюймам (175 см) и лучше брать число ближе к середине. Но если у вас есть дополнительная информация о том, что этот человек – женщина, то 5 футов 4 дюйма – это самая удачная догадка. Дополнительные данные влияют на вероятность.
Это пример модели, которая называется условной вероятностью – вероятностью наступления одного события при условии, что другое событие уже произошло. Условная вероятность помогает лучше оценивать вероятности, используя дополнительную информацию.
Условные вероятности широко распространены в повседневной жизни. Например, тарифы страхования жилья привязаны к различным условиям вероятности страховых требований (например, на побережье Флориды надбавки выше, так как и угроза разрушения от урагана там выше, чем в Пенсильвании).
Точно так же генетическое тестирование скажет вам, подвержены ли вы повышенному риску определенных заболеваний: женщины с аномалиями генов BRCA1 или BRCA2 имеют до 80 % больше риска развития рака груди в возрасте девяноста лет.
Условная вероятность обозначается символом |. Например, вероятность (Р), что у вас будет рак груди к девяноста годам при условии, что вы женщина с мутацией гена BRCA, будет обозначаться как Р (рак груди в 90 лет | женщина с мутацией BRCA).
Некоторых сбивает с толку условная вероятность. Они путают вероятность того, что событие А произойдет при условии, что произошло событие В – Р(А|В), – с вероятностью того, что событие В произойдет при условии, что произошло событие А – Р(В|А). Это называется обратной ошибкой. Вы только что видели, что Р (рак груди в 90 лет | женщина с мутацией BRCA) составляет около 80 %, но вероятность Р (женщина с мутацией BRCA | рак груди в 90 лет) составляет всего 5–10 %, поскольку рак груди развивается у многих других людей без этой мутации.
Разберем более длинный пример, чтобы посмотреть на эту ошибку в действии. Допустим, полиция останавливает произвольного водителя, чтобы проверить на алкоголь, и заставляет его подышать в трубочку. Кроме того, предположим, что тест выдает ошибку примерно в 5 % случаев, показывая, что трезвый человек пьян. Какова вероятность, что этого человека несправедливо обвинят за вождение в нетрезвом виде?
Скорее всего, вы первым делом назовете 5 %. Однако вам дана вероятность, что тест объявляет человека пьяным, даже если на самом деле он трезв, то есть Р (тест = пьян | человек = трезв) = 5 %. Но что, если вас спросят, какова вероятность того, что человек трезв, если тест говорит, что он пьян, или Р (человек = трезв | тест = пьян)? Это совсем другая вероятность!
Вы не учли зависимость результата от базового процента пьяных за рулем. Представьте сценарий, где все ведут себя правильно и никто никогда не садится за руль пьяным. В таком случае вероятность, что человек трезв, будет 100 %, независимо от того, что покажет алкотестер. Когда при расчете вероятности не учитывается базовый процент (например, базовый процент числа пьяных водителей), такая ошибка называется ошибкой базового процента.
- Предыдущая
- 43/87
- Следующая
