Выбери любимый жанр

Вы читаете книгу


Crichton Michael - The Andromeda Strain The Andromeda Strain

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

The Andromeda Strain - Crichton Michael - Страница 20


20
Изменить размер шрифта:

DAY 3

Wildfire

12. The Conference

"TIME TO WAKE UP, SIR." 

Mark Hall opened his eyes. The room was lit with a steady, pale fluorescent light. He blinked and rolled over on his stomach.

"Time to wake up, Sir."

It was a beautiful female voice, soft and seductive. He sat up in bed and looked around the room: he was alone.

"Hello?"

"Time to wake up, Sir."

"Who are you?"

"Time to wake up, Sir."

He reached over and pushed a button on the nightstand by his bed. A light went off. He waited for the voice again, but it did not speak.

It was, he thought, a hell of an effective way to wake a man up. As he slipped into his clothes, he wondered how it worked. It was not a simple tape, because it worked as a response of some sort. The message was repeated only when Hall spoke.

To test his theory, he pushed the nightstand button again. The voice said softly, "Do you wish something, Sir?"

"I'd like to know your name, please."

"Will that be all, Sir?"

"Yes, I believe so."

"Will that be all, Sir?"

He waited. The light clicked off. He slipped into his shoes and was about to leave when a male voice said, "This is the answering-service supervisor, Dr. Hall. I wish you would treat the project more seriously."

Hall laughed. So the voice responded to comments, and taped his replies. It was a clever system.

"Sorry," he said, "I wasn't sure how the thing worked. The voice is quite luscious."

"The voice," said the supervisor heavily, "belongs to Miss Gladys Stevens, who is sixty-three years old. She lives in Omaha and makes her living taping messages for SAC crews and other voice-reminder systems."

"Oh," Hall said.

He left the room and walked down the corridor to the cafeteria. As he walked, he began to understand why submarine designers had been called in to plan Wildfire. Without his wristwatch, he had no idea of the time, or even whether it was night or day. He found himself wondering whether the cafeteria would be crowded, wondering whether it was dinner time or breakfast time.

As it turned out, the cafeteria was almost deserted. Leavitt was there; he said the others were in the conference room. He pushed a glass of dark-brown liquid over to Hall and suggested he have breakfast.

"What's this?" Hall said.

"Forty-two-five nutrient. It has everything needed to sustain the average seventy-kilogram man for eighteen hours."

Hall drank the liquid, which was syrupy and artificially flavored to taste like orange juice. It was a strange sensation, drinking brown orange juice, but not bad after the initial shock. Leavitt explained that it had been developed for the astronauts, and that it contained everything except air-soluble vitamins.

"For that, you need this pill," he said.

Hall swallowed the pill, then got himself a cup of coffee from a dispenser in the corner. "Any sugar?"

Leavitt shook his head. "No sugar anywhere here. Nothing that might provide a bacterial growth medium. From now on, we're all on high-protein diets. We'll make all the sugar we need from the protein breakdown. But we won't be getting any sugar into the gut. Quite the opposite."

He reached into his pocket.

"Oh, no."

"Yes," Leavitt said. He gave him a small capsule, sealed in aluminum foil.

"No," Hall said.

"Everyone else has them. Broad-spectrum. Stop by your room and insert it before you go into the final decontamination procedures."

"I don't mind dunking myself in all those foul baths," Hall said. "I don't mind being irradiated. But I'll be goddammed-"

"The idea," Leavitt said, "is that you be as nearly sterile as possible on Level V. We have sterilized your skin and mucous membranes of the respiratory tract as best we can. But we haven't done a thing about the GI tract yet."

"Yes," Hall said, "but suppositories?"

"You'll get used to it. We're all taking them for the first four days. Not, of course, that they'll do any good," he said, with the familiar wry, pessimistic look on his face. He stood. "Let's go to the conference room. Stone wants to talk about Karp."

"Who?"

"Rudolph Karp."

***

Rudolph Karp was a Hungarian-born biochemist who came to the United States from England in 1951. He obtained a position at the University of Michigan and worked steadily and quietly for five years. Then, at the suggestion of colleagues at the Ann Arbor observatory, Karp began to investigate meteorites with the intent of determining whether they harbored life, or showed evidence of having done so in the past. He took the proposal quite seriously and worked with diligence, writing no papers on the subject until the early 1960's, when Calvin and Vaughn and Nagy and others were writing explosive papers on similar subjects.

The arguments and counter-arguments were complex, but boiled down to a simple substrate: whenever a worker would announce that he had found a fossil, or a proteinaceous hydrocarbon, or other indication of life within a meteorite, the critics would claim sloppy lab technique and contamination with earth-origin matter and organisms.

Karp, with his careful, slow techniques, was determined to end the arguments once and for all. He announced that he had taken great pains to avoid contamination: each meteorite he examined had been washed in twelve solutions, including peroxide, iodine, hypertonic saline and dilute acids. It was then exposed to intense ultraviolet light for a period of two days. Finally, it was submerged in a germicidal solution and placed in a germ-free, sterile isolation chamber; further work was done within the chamber.

Karp, upon breaking open his meteorites, was able to isolate bacteria. He found that they were ring-shaped organisms, rather like a tiny undulating inner tube, and he found they could grow and multiply. He claimed that, while they were essentially similar to earthly bacteria in structure, being based upon proteins, carbohydrates, and lipids, they had no cell nucleus and therefore their manner of propagation was a mystery.

Karp presented his information in his usual quiet, unsensational manner, and hoped for a good reception. He did not receive one; instead, he was laughed down by the Seventh Conference of Astrophysics and Geophysics, meeting in London in 1961. He became discouraged and set his work with meteorites aside; the organisms were later destroyed in an accidental laboratory explosion on the night of June 27, 1963.

Karp's experience was almost identical to that of Nagy and the others. Scientists in the 1960's were not willing to entertain notions of life existing in meteorites; all evidence presented was discounted, dismissed, and ignored.

A handful of people in a dozen countries remained intrigued, however. One of them was Jeremy Stone; another was Peter Leavitt. It was Leavitt who, some years before, had formulated the Rule of 48. The Rule of 48 was intended as a humorous reminder to scientists, and referred to the massive literature collected in the late 1940's and the 1950's concerning the human chromosome number.

For years it was stated that men had forty-eight chromosomes in their cells; there were pictures to prove it, and any number of careful studies. In 1953, a group of American researchers announced to the world that the human chromosome number was forty-six. Once more, there were pictures to prove it, and studies to confirm it. But these researchers also went back to reexamine the old pictures, and the old studies- and found only forty-six chromosomes, not forty-eight.

Leavitt's Rule of 48 said simply, "All Scientists Are Blind." And Leavitt had invoked his rule when he saw the reception Karp and others received. Leavitt went over the reports and the papers and found no reason to reject the meteorite studies out of hand; many of the experiments were careful, well-reasoned, and compelling.

He remembered this when he and the other Wildfire planners drew up the study known as the Vector Three. Along with the Toxic Five, it formed one of the firm theoretical bases for Wildfire.

The Vector Three was a report that considered a crucial question: If a bacterium invaded the earth, causing a new disease, where would that bacterium come from?

After consultation with astronomers and evolutionary theories, the Wildfire group concluded that bacteria could come from three sources.

The first was the most obvious- an organism, from another planet or galaxy, which had the protection to survive the extremes of temperature and vacuum that existed in space. There was no doubt that organisms could survive- there was, for instance, a class of bacteria known as thermophilic that thrived on extreme heat, multiplying enthusiastically in temperatures as high as 70deg C. Further, it was known that bacteria had been recovered from Egyptian tombs, where they had been sealed for thousands of years. These bacteria were still viable.

The secret lay in the bacteria's ability to form spores, molding a hard calcific shell around themselves. This shell enabled the organism to survive freezing or boiling, and, if necessary, thousands of years without food. It combined all the advantages of a space suit with those of suspended animation.

There was no doubt that a spore could travel through space. But was another planet or galaxy the most likely source of contamination for the earth?

Here, the answer was no. The most likely source was the closest source- the earth itself.

The report suggested that bacteria could have left the surface of the earth eons ago, when life was just beginning to emerge from the oceans and the hot, baked continents. Such bacteria would depart before the fishes, before the primitive mammals, long before the first ape-man. The bacteria would head up into the air, and slowly ascend until they were literally in space. Once there, they might evolve into unusual forms, perhaps even learning to derive energy for life directly from the sun, instead of requiring food as an energy source. These organisms might also be capable of direct conversion of energy to matter.

Leavitt himself suggested the analogy of the upper atmosphere and the depths of the sea as equally inhospitable environments, but equally viable. In the deepest, blackest regions of the oceans, where oxygenation was poor, and where light never reached, life forms were known to exist in abundance. Why not also in the far reaches of the atmosphere? True, oxygen was scarce. True, food hardly existed. But if creatures could live miles beneath the surface, why could they not also live five miles above it?