Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Рассада. Использование и развитие метода Митлайдера в России - Угарова Татьяна Юрьевна - Страница 49


49
Изменить размер шрифта:

Потенциальные возможности для формирования урожая у рассады, выращенной в кратчайшие сроки, и у рассады более старшего возраста, которая длительное время росла в неблагоприятных условиях, не одинаковы. Даже если после высадки в грунт растения будут возделываться в одинаковых условиях, урожайность первых будет выше, чем урожайность вторых (раздел 2.4.7). И чем продуктивнее технология овощеводства, тем больше будет разница в урожае.

Казалось бы, какой смысл в том, чтобы запускать рассаду рано, а потом с помощью различных ухищрений не давать ей расти? Не лучше ли дождаться более длинного дня, недостаток света восполнить электродосвечиванием, сбалансировать прочие условия на хорошем уровне и в кратчайшие сроки получить рассаду с высокой потенциальной урожайностью? Безусловно, это более правильный путь. Но он требует подготовки, оснащения подоконников светильниками, некоторых других приспособлений. А без дополнительного освещения остается только одна возможность — медленное выращивание рассады с ограничением полива (разделы 7.1 и 7.3).

5.3. Электродосвечивание рассады

Свет — главная проблема при выращивании рассады, и начинать улучшение условий в жилом помещении нужно с ее решения.

Многие огородники воспринимают нехватку естественного света при выращивании рассады как нечто неизбежное. Такую покорность обстоятельствам можно понять, ведь солнечный свет, это то единственное, за что нам не надо платить. А электродосвечивание стоит денег, дорога сама электроэнергия, и, в особенности, светильники и лампы. Но уж если мы решили заплатить за освещение рассады, хотелось бы использовать наиболее экономичные источники света. Рассада должна получить максимальную пользу при минимальных материальных затратах с нашей стороны.

5.3.1. Какой свет нужен рассаде?

Ответ на этот вопрос кажется очевидным. Растениям нужен солнечный свет, а если это искусственный свет, то, наверное, спектр излучения «хорошей» лампы должен быть как можно ближе к солнечному. Так ли это?

Лучевая энергия солнца, которая доходит до поверхности земли, состоит из ультрафиолетового излучения (длина волны короче 380 нм), видимого света (от 380 нм до 780 нм) и инфракрасного, т. е. теплового излучения (длина волны больше 780 нм). Пик солнечного света лежит в голубой части спектра (475 нм) (рис.5.1).

Рис. 5.1. Спектральное распределение солнечного излучения — (1) и кривая чувствительности фотосинтеза — (2): пик солнечного света находится в голубой части спектра, а максимум фотосинтетической активности — в красной

Глаз человека не воспринимает ни ультрафиолетовые, ни инфракрасные волны, а из видимого спектра наиболее чувствителен к желто–зеленому (555 нм) свету (рис.5.2). Красный свет (650 нм) человеческий глаз чувствует в 10 раз хуже, т. е. нужно в 10 раз больше красного света, чем зеленого, чтобы человек воспринял оба света как равные по интенсивности.

Рис. 5.2. Кривая чувствительности глаза человека имеет пик в желто–зеленой части спектра и снижается в красной и синей области

А к какому свету более всего чувствителен «глаз» растения, т. е. хлорофилл и другие пигменты, улавливающие свет для фотосинтеза? Нужный для фотосинтеза свет показан в сравнении с солнечным спектром на рис.5.1. Представлен спектр действия фотосинтеза (т. е. количество CO2, превращенное в органические соединения) в зависимости от длины волны падающего на лист света. Наиболее активно фотосинтез идет под действием оранжево–красного света (610-700 нм) с максимумом в красной зоне (675 нм). Второй пик активности находится в сине–голубой части спектра (400-510 нм). Рост растений обеспечивается фотосинтезом, значит, растениям в первую очередь требуется свет, обогащенный теми длинами волн, которые нужны для фотосинтеза.

(window.adrunTag = window.adrunTag || []).push({v: 1, el: 'adrun-4-390', c: 4, b: 390})

Таким образом, лампа для освещения рассады совсем не обязательно должна имитировать солнечный свет. Желательно использовать более экономичные лампы, спектр излучения которых обогащен красным и синим светом.

5.3.2. Энергетические характеристики некоторых ламп, применяемых для освещения растений

Первая характеристика любой лампы — это количество потребляемой электроэнергии, т. е. мощность лампы, выражаемая в ваттах (Вт). При выборе лампы для освещения рассады важно оценить, насколько эффективно расходуется потребляемая энергия, т. е. какая ее часть переходит в свет, полезный для фотосинтеза. Для начала надо узнать, какая часть электроэнергии переходит в излучение в видимой области.

При оценке эффективности лампы, прежде всего надо узнать, какая часть потребляемой электроэнергии превращается в видимый свет.

Обычно учитывается не все видимое излучение (380-780 нм), а излучение в диапазоне длин волн от 400 нм до 700 нм. Область 400-700 нм называется областью ФАР (фотосинтетически активная радиация). Излучение в области ФАР, как и потребляемая лампой электроэнергия, измеряется в ваттах.

Доля потребляемой электроэнергии, которая переходит в видимый свет (в области ФАР), у разных ламп отличается в несколько раз, но даже у самых экономичных она составляет не более 30% (табл. 22, 4 столбец). Остальное — тепловые потери и инфракрасное излучение ламп.

Таблица 22 Характеристика различных типов ламп, применяемых для освещения растений

* ФАР — видимый свет в области от 400 до 700 нм (фотосинтетически активная радиация).

** КПД — коэффициент полезного действия

*** КПД оптики — доля общего светового потока, направленная на растения. Зависит от конструкции лампы, светильника и отражателя.

По этой характеристике меньше всего для освещения рассады подходят обычные лампочки накаливания с вольфрамовой нитью. Видимый свет составляет незначительную часть их спектра, а остальное — это инфракрасное, т. е. тепловое излучение (рис.5.3). В лампочках накаливания львиная доля потребляемой электроэнергии расходуется на ненужное, более того, на вредное для растений инфракрасное излучение. Особенно неблагоприятное физиологическое воздействие на рассаду имеет излучение с длинами волн 700-1000 нм. Эти лучи вызывают вытягивание стебля.

Рис. 5.3. Спектр излучения обычной лампочки накаливания с вольфрамовой нитью (показан относительно кривой чувствительности глаза человека): максимум энергии излучается вне области ФАР (область ФАР выделена пунктиром)

Значительно выше доля электроэнергии, переходящей в видимый свет в области ФАР, у разрядных ламп. Для освещения растений применяют разрядные лампы различного типа. В рассадных теплицах часто применяют ртутные лампы высокого давления ДРЛФ 250 и ДРЛФ 400 (раздел 3.1.9).Эти лампы имеют самый низкий КПД ФАР из всех разрядных ламп (10-12%).

В квартирах обычно используют лампы холодного свечения (люминесцентные). Трубчатые люминесцентные лампы мощностью 40-80 Вт имеют КПД ФАР 20-22%. Кроме трубчатых промышленность производит компактные люминесцентные лампы, напоминающие по своим габаритам обычную лампочку накаливания. Компактные отечественные лампы выпускаются мощностью 12 и 16 Вт. Они имеют КПД ФАР в 1,5 раза ниже, чем указанный в таблице для трубчатых люминесцентных ламп.