Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Секс с учеными: Половое размножение и другие загадки биологии - Алексенко Алексей - Страница 57
Вот, например, взглянем еще раз на рисунок на странице 292. Допустим, что в верхней части изображенной хромосомы находится ген, определяющий цвет спор – светлый или темный. Тогда споры в стручке будут лежать в таком порядке: сперва четыре темные, потом четыре светлые. А если этот ген в нижней части хромосомы, то порядок будет другой: две темные, две светлые, две темные, две светлые. Это потому, что в хромосоме произошла рекомбинация, показанная на рисунке крестиком.
А если – очень маловероятное событие, но вдруг? – во время самого первого удвоения хромосом произойдет ошибка прямо в гене цвета спор, вместо одной буквы в цепь ДНК встроится другая? Если ошибка останется неисправленной, мы увидим стручок-аск, где всего одна спора – соответствующая этой мутантной нити ДНК – будет белой – среди семерых своих темных сестер.
К огромному сожалению, мой любимый гриб аспергилл не умеет укладывать свои споры так аккуратно, поэтому у него невозможно изучать отдельные события рекомбинации (как выражаются генетики, «между локусом и центромерой»), как на картинке. Зато можно собрать разом все споры от всех мейозов и изучать статистику – какие пары генов рекомбинируют часто, а какие реже. Чаще всего, естественно, рекомбинируют те, что находятся дальше друг от друга. Если они в разных хромосомах, то рекомбинантов вообще будет 50﹪, потому что в разных хромосомах все происходит независимо. А если гены в одной хромосоме, и к тому же близко, то вероятность того, что рекомбинация (тут ее часто называют кроссинговером) произойдет именно между ними, низка. Сравнивая частоты рекомбинации между разными генами, в середине ХХ века генетики построили генетические карты всех восьми хромосом нашего гриба. Потом, в конце века, для тех же хромосом построили «физические карты» – разделили их на отдельные перекрывающиеся кусочки и посмотрели, что там на этих кусочках есть. А потом вообще расшифровали весь геном, буква за буквой. Конечно, при сравнении генетических и физических карт ошибок нашлось немало, но, как ни странно, в большинстве случаев оказалось, что порядок генов и расстояние между ними было определено генетиками более или менее верно.
Но вернемся к мейозу. Картинка выглядит не так уж сложно: сперва разделяются гомологичные хроматиды, потом сестринские. Выучить такое для любого студента пара пустяков. Тем не менее бывают совсем уж бестолковые студенты, которые на экзамене заявляют, что в первом делении мейоза разделяются сестринские хроматиды, а во втором – гомологичные. Подобные неучи заслуживали бы страшных академических кар, если бы ту же ошибку постоянно не совершали вполне реальные живые существа – некоторые клещи, тли, растения семейства осоковых. Да и с другими организмами такое, кажется, бывает, хотя лишь в порядке досадного промаха. Называется это инвертированным мейозом. Вот он нарисован ниже: можно видеть, что эта картинка выглядит ничуть не менее наукообразно, чем предыдущая.
Были выдвинуты вполне разумные гипотезы, зачем тлям и осоке это понадобилось, однако на душе остается неприятный осадок: так, значит, этот самый классический мейоз, каким мы его знаем, вовсе не единственно возможное решение задачи. На первый взгляд, инвертированный мейоз по сложности не отличается от классического: два деления клетки – и дело в шляпе, результат достигнут. Странно, что природа – за редкими, но вполне достоверными исключениями – выбрала первый вариант и презрительно отвергла второй.
Но и это еще не все. Если кто-то из читателей невероятно дотошен и привык подвергать все на свете сомнению, он может пойти в подобных вопросах еще дальше: а зачем вообще нужно именно два деления? Если помните, мейоз у нас начался с того, что все хромосомы в клетке удвоились. Когда вам нужно уменьшить что-то вдвое, довольно глупо сперва увеличивать это вдвое, а потом делить на четыре. Но именно это, кажется, показалось разумным эволюции сложных живых существ на нашей планете. А ведь можно было решить задачу в одно действие. На странице 296 изображена схема такого простого «одноступенчатого мейоза».
(window.adrunTag = window.adrunTag || []).push({v: 1, el: 'adrun-4-390', c: 4, b: 390})Просто прелесть, ленивые студенты ликуют. Но вот природе такая простота пришлась совсем не по душе: похоже, одноступенчатого мейоза вообще не бывает. Одно время его почти уже было нашли у некоторых – как тогда думали, очень примитивных – одноклеточных эукариот и вполне логично решили, что вот она, предковая форма мейоза, простая как сибирский валенок. А потом оказалось, что эти эукариоты примитивны не совсем в этом смысле: это не реликт прекрасной изначальной простоты, а результат вторичного упрощения. И тут же авторитетные биологи вроде англичанина Томаса Кавалье-Смита (1942–2021) поставили под сомнение существование у них одноступенчатого мейоза – там все тоже оказалось не так просто. В этих тонкостях никто до сих пор не разобрался, так что в сухом остатке мы имеем термин «одноступенчатый мейоз», а соответствует ли ему что-то в реальном мире, непонятно. Слово есть, а мейоза, возможно, и нет. Зато это слово вы непременно встретите в теоретических статьях, посвященных эволюции мейоза: все гипотезы по поводу этой эволюции теперь должны объяснять, почему, собственно, его нет или он бывает, но совсем-совсем редко.
Такие гипотезы, конечно, существуют, и они многое объясняют, но сами по себе выглядят сложновато (об одной из них мы расскажем в самом конце этой части, в тридцать седьмой главе). Однако на этом фоне весьма выигрышно смотрится и не гипотеза даже, а просто голос здравого смысла: возможно, нам вообще не надо выискивать, чем классический мейоз лучше одноступенчатого, потому что такого выбора у природы никогда не было. Нам кажется, что классический мейоз сложноват, но на самом деле для эволюции изобрести его было проще всего, а все остальные разновидности – это уже последующий разброд и шатания.
А из чего же эволюция его сделала, спросите вы? Да из митоза, из обычного клеточного деления. Из всех вариантов возможных мейозов тот, который существует у подавляющего большинства земных существ, можно получить из митоза за наименьшее число простых шагов. В следующих главах мы рассмотрим отдельные стадии мейоза и убедимся, как логично и естественно они выглядят, если предположить, что это не какой-то эволюционный скачок, а довольно экономичная адаптация того, что клетки и так уже имели, – обычного аппарата деления. И начнем, наверное, с рекомбинации.
Богданов Ю. Ф. Инвертированный мейоз и его место в эволюции путей полового размножения // Генетика. 2016. Т. 52. № 5. С. 541–560.
Богданов Ю. Ф. Эволюция мейоза одноклеточных и многоклеточных эукариот: ароморфоз на клеточном уровне // Журнал общей биологии. 2008. Т. 69. № 2. С. 102–117.
Марков А. На пути к разгадке тайны мейоза. См.: https://elementy.ru/genbio/synopsis/170/Evolyutsiya_meyoza_odnokletochnykh_i_mnogokletochnykh_eukariot_Aromorfoz_na_kletochnom_urovne
Hamoir G. The Discovery of Meiosis by E. Van Beneden, a Breakthrough in the Morphological Phase of Heredity. The International Journal of Developmental Biology. 1992. 36(1): 9–15.
Lenormand T., Engelstadter J., Johnston S. E., et al. Evolutionary Mysteries in Meiosis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2016. 371(1706): 20160001.
Zou Y. August Friedrich Leopold Weismann (1834–1914). The Embryo Project Encyclopedia. 2014-05-23.
Глава двадцать девятая, в которой упоминаются ядерная война и Анджелина Джоли
Модели рекомбинации
В третьей главе читатели столкнулись с загадкой: почему среди сотен потомков Льва Толстого нет ни одной копии великого писателя, зато есть шведская джазовая певица Виктория Толстой (!), парижский фотограф Дмитрий Толстой и даже заместитель председателя ГД РФ Петр Олегович Толстой. Ответ предлагалось искать в генетической рекомбинации, которая все эти годы тасовала гены Льва Николаевича, и вот о ней-то сейчас и пойдет речь.
- Предыдущая
- 57/88
- Следующая
