Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Огарок во тьме. Моя жизнь в науке - Докинз Ричард - Страница 83
Последний абзац затрагивает один из основных биологических уроков, что я вынес из этого упражнения в программировании. Перед моим внутренним взором стояла Страна биоморфов, многомерный морфологический ландшафт, девятимерный гиперкуб, в котором скрывались все возможные биоморфы – каждый соединялся со всеми остальными плавной траекторией пошаговой эволюции. В теории (хоть и не так аккуратно, потому что количество генов не задано) мы можем представить себе всех возможных реальных животных, расположенных в n-мерном гиперкубе: в третьей главе “Слепого часовщика” я назвал это генетическим пространством. Большинство обитателей этого чудовищного (выбор слова не случаен) гиперкуба не только никогда не существовали, но и не выжили бы, если бы появились: “Количество способов быть мертвым неизмеримо больше количества способов быть живым” (эта фраза, к моему удовольствию, вошла в “Оксфордский словарь цитат”). Существующие животные – островки в этом гиперпространстве, рассеянные далеко друг от друга, будто в некоей Гиперполинезии: они окружены прибрежными рифами из близкородственных животных и отделены от остальных островов во многом непреодолимыми пространствами невозможных животных. Реальная эволюция отражена в траекториях внутри гиперкуба. Видите ли, хоть я и не силен в решении уравнений, но, может быть, во мне есть зачатки математической души. По крайней мере, я на это надеюсь.
Набор биоморфов, выведенных программой “Слепой часовщик”.
Позже Дэн Деннет плодотворно развил мою идею под названием “Менделевская библиотека”, а я подхватил ее дальше в книге “Восхождение на гору Невероятности”, в воображаемом Музее всех возможных животных:
Представьте себе музей с залами, простирающимися во все стороны, а также вверх и вниз сколько хватает глаз. В его хранилищах собраны все виды животных, которые когда-либо существовали в природе или гипотетически могли бы существовать. Каждый вид помещается рядом с теми, на кого он больше всего похож. Направление одной музейной галереи – это одно измерение, отвечающее тому или иному направлению, в котором может проявляться изменчивость животных. <… > Галереи должны пересекаться всевозможными способами, и не только в привычном для нас и нашего восприятия трехмерном пространстве.
В книге “Восхождение на гору Невероятности” я говорил об этом музее на особом примере раковин моллюсков. Довольно давно было понятно, что раковина – это (логарифмически) расширяющаяся трубка, которая растет с краю. Если не обращать внимания на форму поперечного сечения трубки (скажем, принять ее за круг), то форма любой раковины определяется всего лишь тремя числами, которые в “Восхождении на гору Невероятности” я назвал “расширение”, “червячность” и “конусность”. “Расширение” определяет, с какой скоростью трубка расширяется по мере роста, “конусность” – ее отклонение от плоскости. У типичного аммонита конусность равна нулю (он лежит в одной плоскости), а вот у раковины Turritella она высока. Расширение высоко у моллюска-сердцевика (“трубка” расширяется так быстро, что моллюск обретает конечную форму, так и не дойдя до подобия трубки), но низко у Turritella. “Червячность” дольше объяснять словами, но воплощением высокой “червячности” на иллюстрации служит Spirula. Американский палеонтолог Дэвид Рауп сообразил: если разнообразие форм ряда животных определяется всего лишь тремя числами, то этих животных можно расположить в простом математическом пространстве – в трехмерном кубе. Обойдемся без гиперкуба – достаточно будет обычного куба. И таким же образом я сообразил, что могу написать версию биоморфной программы для улиток, где будет всего три гена вместо девяти. Я бы выбирал для дальнейшего размножения не набор древоподобных биоморфов, а набор улиткоморфов – или, чтобы не смешивать языки, конхоморфов. Если поколение за поколением выбирать определенного “производителя”, можно провести эволюцию от любой одной раковины к любой другой. Эволюция воплотится в пошаговой траектории сквозь куб всех возможных раковин.
(window.adrunTag = window.adrunTag || []).push({v: 1, el: 'adrun-4-390', c: 4, b: 390})Раковины, на которых видно “расширение”, “червячность” и “конусность”:
(a) высокое “расширение”: Lt conch a castrensis, двустворчатый моллюск;
(b) высокая “червячность”: Spirilla: (с) высокая “конусность”: Turritella terehra.
Чтобы написать программу, мне требовалось всего лишь заменить старую девятигенную эмбриологию биоморфов на новый модуль трехгенной эмбриологии раковин. Все прочее оставалось без изменений. И вправду, оказалось очень просто вырастить любую раковину из любой другой – просто выбирая в каждом поколении раковину, которая больше всего была похожа на конечную цель. В те времена еще не было 3D-принтеров, а то бы я мог напечатать весь свой куб. Но пришлось обойтись тем, чтобы напечатать шесть его граней на плоских листах бумаги, которыми я обклеил картонную коробку. На цветной вклейке есть фотография: Лалла держит в руках “коробку улиток”.
Настоящая эволюция, предположительно, не ограничена в своих блужданиях по кубу – Музею всех возможных раковин. Но, как уже заметил Рауп, существует довольно много зон (точнее, объемных областей), куда хода нет: хоть математически в них все возможно, но в них не выжил ни один моллюск. Такие формы были бы нежизнеспособны. Мутанты, забредшие в такие области, где “обитают драконы”, попросту умирали. Ниже приведены четыре математически возможных жителя необитаемой области куба. Они не существуют в виде раковин – но, что занятно, существуют в виде рогов антилоп и других полорогих.
Но строго говоря, Музей всех возможных раковин – не трехмерный куб. Его можно считать кубом, только если не брать в расчет поперечное сечение растущей трубки и принять его, скажем, за круг. Я попробовал добавить к исходным трем генам четвертый, дающий разнообразные эллиптические формы вместо круга. Но реальная жизнь не склонна к такому геометрическому совершенству. Поперечное сечение многих раковин непросто определить математически (хотя в принципе это возможно), поэтому я вводил его в программу вручную. За исключением изменений в эмбриологическом модуле, программа осталась в том же виде, в ней было всего три гена, и я вывел на экране компьютера обнадеживающе реалистичную коллекцию раковин (см. ниже):
Можно ли было добавить в мою эволюционную программу новые эмбриологические модули, вдобавок к исходной эмбриологии деревьев и эмбриологии раковин? Меня давно увлекали “преобразования” Дарси Томпсона. Этот великий шотландский зоолог (см. стр. 111–112) был в числе тех, кто вдохновлял и Раупа, и, позже, меня самого в работе над раковинами. Но главным образом он был известен своими демонстрациями того, как одну биологическую форму можно превратить в другую путем математического преобразования. Это можно представить наглядно, изобразив определенную форму животного – скажем, краба Geryon — на растянутом резиновом листе. И вы обнаружите, что можете преобразовать его в разнообразные родственные формы, растягивая резину математически заданными способами. Вот как Дарси Томпсон изображает этот процесс. Вверху слева на бумаге (“резине”) в клетку изображен Geryon. Формы (увы, лишь приблизительные) пяти других крабов можно получить, растягивая координаты (“резину”) пятью разными изящными математическими способами.
- Предыдущая
- 83/101
- Следующая
