Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
На краю пропасти. Экзистенциальный риск и будущее человечества - Орд Тоби - Страница 37
Неконтролируемый искусственный интеллект
Летом 1956 года небольшая группа математиков и программистов собралась в Дартмутском колледже, чтобы приступить к грандиозному проекту по разработке разумных машин. Они изучали многие аспекты познания, включая логическое мышление, креативность, речь, принятие решений и обучение. Их вопросы и установки в итоге определили облик зарождающейся сферы искусственного интеллекта (ИИ). Свою конечную цель они видели в том, чтобы создать машину, чей интеллект мог бы сравниться с человеческим[394].
Несколько десятилетий спустя сфера ИИ упрочила свои позиции, но умерила амбиции. Наблюдаются серьезные успехи в логике, мышлении и играх, но в некоторых других областях прогресса нет вовсе. К 1980-м годам исследователи начали понимать эту закономерность успехов и провалов. Как ни странно, с задачами, выполнение которых мы считаем вершиной человеческого интеллекта (например, математическим анализом и игрой в шахматы), компьютеры справляются гораздо легче, чем с задачами, которые даются нам практически без труда (например, узнать кошку, понять простое предложение или поднять яйцо). В связи с этим, хотя в одних сферах ИИ значительно превосходил человеческие способности, в других он уступал даже двухлетнему ребенку[395]. Из-за невозможности добиться всестороннего прогресса многие исследователи ИИ отказались от изначальных целей по созданию общего интеллекта и стали ориентироваться на разработку специализированных методов для решения конкретных задач. Задачи более амбициозные списали на юношеский задор первооткрывателей в незрелой области исследований.
Но маятник начал обратный ход. С первых дней исследования ИИ ученые стремились создать системы, способные обучаться новым вещам без перепрограммирования. Одним из первых подходов к машинному обучению стало конструирование искусственных нейронных сетей, напоминающих строение человеческого мозга. В последнее десятилетие этот метод наконец начал развиваться. Их структура и принципы обучения стали технически совершеннее, базы данных – больше, а вычислительная мощность – выше, и это в совокупности позволило нам обучать гораздо более крупные и глубокие сети, чем когда-либо ранее[396].
Такое глубокое обучение дает сетям способность усваивать тонкие идеи и проводить различия. Теперь они не только в состоянии узнать кошку, но и лучше человека справляются с распознаванием разных кошачьих пород[397]. Они лучше нас узнают людей в лицо и различают идентичных близнецов[398].
И мы научились применять эти способности не только для распознавания и классификации. Системы глубокого обучения могут переводить с языка на язык почти на уровне профессионального переводчика. Они могут создавать изображения людей и животных с фотографической точностью. Могут говорить голосами людей, которых послушали всего несколько минут. И могут освоить точное непрерывное управление, например научиться водить машину или собирать конструктор лего с помощью роборуки[399].
Но, пожалуй, главным предвестником грядущего служит их способность обучаться играм. Игры занимали центральное положение в сфере ИИ со времени Дартмутской конференции. В результате непрерывного поступательного прогресса ИИ, который в 1957 году играл в шахматы на любительском уровне, в 1997 году вышел на сверхчеловеческий уровень, а затем, по сути, пошел дальше[400]. Для этого потребовался огромный объем специальных человеческих знаний о шахматной стратегии.
В 2017 году в шахматное дело вступило глубокое обучение, которое показало впечатляющие результаты. Команда исследователей из ИИ-компании DeepMind создала AlphaZero – основанную на нейронной сети систему, которая научилась играть в шахматы с нуля. Она прошла путь от новичка до гроссмейстера всего за четыре часа[401]. Потратив меньше времени, чем у профессионала уходит на две партии, она приобрела стратегическое знание, на овладение которым у людей ушли века, и стала играть лучше, чем самые способные люди и чем традиционные программы. К огромному удовольствию шахматистов, она играла не в скучном методическом стиле, который ассоциируют с компьютерными шахматами, а выбирала нестандартные и смелые ходы, напоминающие о романтической эпохе в истории этой игры[402].
(window.adrunTag = window.adrunTag || []).push({v: 1, el: 'adrun-4-390', c: 4, b: 390})Но что самое главное – AlphaZero умела не только играть в шахматы. Тот же самый алгоритм с нуля научился играть в го и за восемь часов значительно превзошел способности любого человека. Ведущие мировые игроки в го привыкли считать, что играют почти идеально, и потому разгромное поражение стало для них неожиданностью[403]. Действующий чемпион мира Кэ Цзе сказал: “Человечество потратило тысячи лет на совершенствование своей тактики, но теперь компьютеры говорят нам, что мы заблуждались… Я бы даже сказал, что никто из людей пока и близко не подобрался к истине го”[404].
Именно общий характер передового ИИ и производит на нас самое сильное впечатление, возрождая у исследователей амбиции догнать и превзойти человеческий интеллект по всем параметрам. Такой подход иногда называют созданием общего искусственного интеллекта (ОИИ), чтобы не путать его с более узкими подходами, господствующими в отрасли. Хотя нестареющие игры в шахматы и го лучше всего демонстрируют великолепие глубокого обучения, его размах стал очевиден при работе с видеоиграми Atari 1970-х годов. В 2015 году исследователи разработали алгоритм, способный научиться играть в десятки совершенно разных игр Atari гораздо лучше, чем человек[405]. В отличие от систем для шахмат и го, которые отталкиваются от символического представления игральной доски, системы для Atari обучались играм, ориентируясь непосредственно на счет и на пиксели на экране. Они доказывают возможность создания систем общего искусственного интеллекта, поскольку учатся управлять миром на основе необработанных визуальных данных и достигают своих целей во множестве разнообразных сред.
Этот рывок вперед за счет применения глубокого обучения вселяет в нас огромный оптимизм относительно того, что станет возможно в недалеком будущем. Стремительно растет и число исследователей ИИ, и объем венчурного финансирования, поступающий в отрасль[406]. Предприниматели стараются реализовать на практике каждый новый прорыв, от систем синхронного перевода, личных помощников и беспилотных автомобилей до изобретений, внушающих бо́льшую тревогу, таких как усовершенствованные системы наблюдения и смертоносное автономное вооружение. Настало время больших надежд и огромных этических трудностей. Высказываются серьезные опасения о том, что ИИ укореняет социальную дискриминацию, вызывает массовую безработицу, поддерживает слежку с репрессивными целями и нарушает принципы ведения войны. О каждом из этих опасений можно написать отдельную главу. Но в этой книге рассматриваются экзистенциальные риски, с которыми сталкивается человечество. Может ли развитие ИИ представлять риск такого огромного масштаба?
Рисунок 5.1. Показатели развития ИИ и уровня интереса к нему. Лица демонстрируют недавний стремительный прогресс в создании реалистических изображений “вымышленных” людей. Графики показывают долгосрочный прогресс шахматного ИИ, который в конце концов превзошел лучших гроссмейстеров (по рейтингу Эло), и недавний рост научной активности в отрасли, оцениваемой по числу статей, размещенных в arXiv, и посещаемости конференций[407].
С наибольшей вероятностью экзистенциальный риск возникнет в том случае, если исследователям ИИ удастся реализовать свои великие амбиции по созданию систем общего искусственного интеллекта, способности которых превзойдут человеческие. Но стоит ли этого ожидать, а если да, то когда именно? В 2016 году был проведен обстоятельный опрос, в котором приняло участие более 300 ведущих исследователей машинного обучения[408]. Их спросили, когда система ИИ “сможет выполнять любую задачу лучше человека и при меньших затратах”, и они оценили вероятность того, что это случится к 2061 году, в среднем в 50 %, а того, что это случится уже к 2025 году, – в 10 %[409].
- Предыдущая
- 37/130
- Следующая
