Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Сколько будет 2+2? - Елизаров Евгений Дмитриевич - Страница 2


2
Изменить размер шрифта:

А и в самом деле, зачем нужна философия человеку, который мечтает упражняться в прямо противоположном – в абсолютно точном и конкретном знании? Человеку, который чуждается пустых абстрактных умствований о каких-то противоречиях и противоположностях, о кабалистике «отрицания отрицаний», о «качестве» и «количестве»? Словом, человеку, который хочет веровать лишь в то, что поддается только строгим доказательствам и проверке, полагаться лишь на те результаты познавательной деятельности, которые, способны воплотиться в формирующие самый остов нашей цивилизации материальные ценности?

В конце концов мозг человека – это всего лишь один из органов нашего тела, который, как и все остальные, для своего развития нуждается в постоянном упражнении. Но если мышцы можно «накачивать» и на каких-то специализированных тренажерах, конструкция и динамика которых, на первый взгляд, не имеет ничего общего с теми спортивными дисциплинами, рекорды которых не дают покоя честолюбивому юниору, почему бы и не поупражняться на философском «стенде»? Может, и в самом деле, как тонкое воздействие по-особому настроенных пружин тренажера способно быстрее гармонизировать настроившуюся на предельные нагрузки мышечную систему организма, систематические упражнения в абстрактной силлогистике помогают оттачивать нам точность и конкретность нашего мышления? Но ведь известно, что великие мастера далеко не всегда формировались в оснащенных по последнему слову эргономики и техники спортивных залах. Скорее, наоборот, куда как чаще их находили на простых задворках, и столичным тренерам оставалось лишь немногое – отшлифовать уже вполне ограненные кристаллы.

Так, может быть, и в овладении вершинами точного и конкретного мышления доступно положиться на здоровые рефлексы своего собственного, уже вполне сформировавшегося сознания…

А, собственно, в чем именно состоит точность и конкретность научной мысли, чем именно они обеспечиваются?

Основы того, что мы называем научным методом, были разработаны еще несколько столетий тому назад. Этот метод включает в себя несколько этапов. Существо первого сводится к проведению систематических наблюдений и измерений. Второй состоит в изучении моделей, которые вырабатываются в результате наблюдений и измерений. Третий включает в себя выдвижение гипотез для объяснения наблюдаемых моделей. Четвертый состоит в предсказании результатов планируемых, но еще не проведенных экспериментов, основывающихся на том, что наша гипотеза правильно описывает положение вещей. Наконец, пятый заключается в практическом осуществлении таких экспериментов с целью проверки предсказаний, сделанных на основе гипотез. Если предсказания подтверждаются, гипотеза признается достоверной. Если достаточная экспериментальная проверка показывает, что гипотеза подтверждается во всех случаях, она получает статус научной теории.

Казалось бы, здесь все четко и определенно, но ниже мы увидим, что в действительности научный метод ни в коей мере не сводится к очерченным только что этапам. Кроме этих хрестоматийных положений, любая научная дисциплина опирается и на целую систему предельно общих, зачастую даже не поддающихся строгому определению, суждений о мире, и на развитую совокупность каких-то «до-логических» действий, которые выполняются где-то глубоко под поверхностью того слоя сознания, который доступен нашему повседневному контролю и управлению. Больше того, вовсе не тем, строго алгоритмизированным и доступным проверке на всех промежуточных этапах исследования процедурам, но именно этим, последним, практически не поддающимся верификации началам и принадлежит ведущая роль в поиске истины. Именно так: без настоящей культуры мышления и без опирающейся на культуру же интуиции исследователя, все эти процедуры абсолютно бесплодны.

Все это мы и хотим показать в настоящем Введении.

В принципе, и в самом деле совершенно неважно, на чем именно оттачивать искусство аналитической мысли. Но если так, то почему бы не поупражняться и на таком банальном примере? Вот и попробуем получить ответ на вынесенный в заглавие вопрос: сколько будет «два плюс два»?

Но сразу оговоримся: знакомый всем нам с детства результат должен быть – по меньшей мере на время – забыт. Ниже мы постараемся показать, что для этого есть вполне достаточные основания. Тот же ответ, который мы должны будем получить в ходе анализа, обязан удовлетворять всем жестким требованиям науки. Это значит, что, во-первых, он должен быть строго объективным, то есть независящим ни от нашей воли, ни от нашего собственного сознания. Во-вторых, он должен обладать признаками исчерпывающего всеобязательного правила, некоего всеобщего закона природы, который не знает решительно никаких исключений. В-третьих, ему надлежит исключать всякую приблизительность. Наконец, в-четвертых, он не вправе страдать решительно никакой абстрактностью, он обязан быть строго конкретным, то есть обязан соответствовать всему кругу каких-то определенных условий, жестко обставляющих искомый результат этого сложения.

Правда, на первый взгляд, предлагаемый для пробного исследования вопрос отдает чем-то вроде неприкрытого издевательства. В самом деле, можно ли вообще предложить что-либо менее простое и очевидное даже для школьника младших классов? Задавать же его тем, кто уже успел доказать свое умение свободно ориентироваться в науке, а это Введение – повторимся – адресовано именно тем, кто ставит своей целью овладение методами решения интеллектуальных задач наивысшего уровня сложности , – что может быть более глупым и вызывающим? Однако не будем торопиться, формулируемая задача в действительности не так уж и проста, как кажется на первый взгляд. Более того, она с полным основанием может быть отнесена именно к тому уровню задач, которые требуют от исследователя максимальной мобилизации всех его интеллектуальных ресурсов.

К доказательству этого тезиса мы и приступаем.

Глава 1. Два чего и два чего?

Долгое время склонные к тщательному анализу и глубокой проверке всего очевидного люди называли себя мудрецами. Первым, кто назвал себя иначе – философом был Пифагор.

Его рождение было предсказано пифией его отцу, Мнесаху. Сохранилась древняя легенда. Она гласит, что Мнесах со своей молодой женой Парфенисой совершили паломничество в Дельфы (обычное для того времени дело), и там оракул предрек им рождение сына, который станет известен всему миру своей мудростью. А еще – великими делами и красотой. Оракул также сообщил, что бог Аполлон его устами повелевает им немедленно плыть в Сирию. Супруги повинуются воле богов, и вот через положенный срок в Сидоне на свет появляется мальчик. В благодарность солнечному богу, в честь Аполлона Пифийского, его мать принимает новое имя – Пифиада. Сына же согласно называют Пифагором, то есть «предсказанным пифией».

Теперь, по истечении более чем двух тысячелетий, мы знаем, что древнее пророчество сбылось в полной мере. Имя Пифагора навсегда осталось в нашей истории. Мы знаем его как великого математика, но вовсе не математические открытия сделали его знаменитым. В учении Пифагора решительно невозможно оторвать математику от философии, и тот импульс, который был придан им тогдашней математике, обязан именно ей. В сущности им была доказана нерасторжимая связь этих великих сфер человеческой мысли, и обнаружению именно этой глубинной связи обязано все последующее развитие их обеих. Впрочем, не только их: вне связи с философией оказывается абсолютно немыслимым развитие ни одной науки о природе.

Вот и последуем за этой связующей науки нитью…

Но сначала – небольшое отступление.

Уже сама постановка вопроса свидетельствует о наличии сомнения в справедливости в общем-то известного ответа. Действительно, если никаких сомнений нет, не может быть и самого вопроса – если, разумеется, он не адресован тем, кто только начинает постигать школьные премудрости. Ответ ведь известен всем, кто уже вышел из того далекого счастливого возраста. Законы математики непреложны, и слепая вера в их незыблемость со временем образует самый фундамент нашего мировоззрения.