Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Онтология математического дискурса - Гутнер Г Б - Страница 3
Структурное направление в рассмотрении природы математических объектов получило в дальнейшем значительное развитие, преимущественно усилиями французских исследователей. Обзор их работ приводится, например, в [59]. Здесь же указывается на взаимосвязь математического структурализма со структурализмом в языкознании. Серьезное исследование понятия структуры в математике и естествознании предпринято в монографии Н. Мулуда [37]. Этот ученый указывает на два нетождественных представления о структуре, используемых в науке. Согласно первому, структура есть комплекс взаимодействующих элементов, каждый из которых не может быть рассмотрен изолированно от остальных. Второе представление рисует структуру как "множество элементов, определяемых некоторыми отношениями такого рода, что становится возможным вывести все реляционные свойства элементов в случае, если даны операциональные правила, позволяющие преобразовывать доминирующие отношения". Первое из названных представлений характерно для описания природных и общественных феноменов (например ансамбля частиц в физике или общественных групп в социологии). Второе прежде всего относится к аксиоматическим построениям в математике. Мулуд, впрочем, замечает, что при развитии теоретического знания представление о структуре как о комплексе неизменно превращается в описание "операционального" (или "аксиоматического") типа ([37], c. 30-32).
Математический структурализм получил также существенное развитие в работах группы английских и американских авторов. Их исследования также касаются главным образом аксиоматических систем и потому центральным персонажем их работ неизменно оказывается Гильберт (см. [81] и [82]). Приведем весьма емкую характеристику структурализма, которую дает один из ведущих философов этого направления М. Резник: "Под структурализмом я понимаю общий философский подход к математике, основное кредо которого состоит в том, что математика изучает структуры и что математические объекты суть ничто иное как места в этих структурах" ([81], c. 83). Важной особенностью исследований англоязычных авторов является, на наш взгляд, попытка выяснить отношения с реализмом (или платонизмом), который некоторые из них рассматривают как главную альтернативу структурному подходу. Так Б. Хейл, выделяя ряд течений в рамках структурализма, отмечает, что все они "противостоят платонистскому взгляду на математику". Характеризуя последний, Хейл цитирует С. Шапиро: "Традиционный платонизм полагает, что предметом исследований той или иной математической дисциплины является совокупность абстрактных объектов, таких как натуральные числа, каждый из которых в определенном смысле онтологически независим от любого другого" ([73], c. 126).
Существует одна, на наш взгляд странная, особенность, присущая практически всем исследователям, придерживающимся структуралистского подхода. Мы уже отмечали, что идея структуры разрабатывалась - задолго до возникновения структурализма - в творчестве Кассирера (равно как и других философов Марбургской школы). Однако никто из структуралистов (насколько, по крайней мере, нам известно) не указывает на какую-либо связь с кантианской или нео-кантианской традицией. Более того, в ряде работ встречается известное отторжение этой традиции. В частности Мулуд указывает на несовместимость кантовской системы с аксиоматическим подходом ([37], c. 36). (См. примечание 6) Шапиро ([82], c.149) рассматривает появление аксиоматических методов и связанного с ними структурного подхода как попытку освободить математику от априорных форм созерцания (т.е. от интуиции пространства и времени). Гильбертовскую программу он считает поэтому "глубоко анти-кантовской", несмотря на то, что сам Гильберт неоднократно заявлял о своих кантианских пристрастиях (с. 156).
Задачей нашего исследования является согласование трансцендентального метода со структурным подходом. Мы попытаемся обосновать, что - как уже отмечалось выше - именно трансцендентализм (кантовского типа) делает структуру основной категорией математического и естественнонаучного мышления. Более того, трансцендентализм дает полное обоснование структурализма: именно в рамках трансцендентального рассмотрения становится понятным каким образом формальная система (т.е. структура) оказывается адекватным средством описания физической реальности и почему, в частности, математика столь эффективна при изучении природы. Таким образом будет установлено, что структурализм обладает теми же преимуществами, которые П.Мэдди находила лишь у реализма.
Другой задачей предпринимаемого исследования будет разработка ряда категорий, необходимых, на наш взгляд, для структурного описания математического мышления. Проблема состоит прежде всего в том, чтобы представить понятие структуры в виде философской категории. Для этого необходимо согласовать его с рядом других категорий, в значительной мере обуславливающих друг друга. Прежде всего это - объект, конструкция и дискурс. Нашей задачей будет по возможности точное определение этих категорий, объяснение их связи и уточнение их онтологического смысла. Говоря об онтологическом смысле категорий, мы имеем в виду способ использования их в рассуждении - мы, иными словами, попытаемся установить, как, пользуясь названными категориями, можно установить существование или описать нечто как существующее (См. примечание 7)
Примечания к Введению
1. Собственная задача Шеллинга состоит в том, чтобы развить оба названных подхода и показать их конечное тождество. Нас ни в малейшей мере не будет интересовать возможность реализации подобного проекта, но само произведенное Шеллингом разделение представляется очень существенным. вернуться в текст
2. Кассирер считает, что существо описанной логической процедуры не будет меняться от того, что именно полагается в основание образуемого абстрактного понятия. Это может быть и единичная вещь, о которой "сказываются" ее свойства, и субстантивированная универсалия (как это полагают средневековые реалисты), и психическое переживание, т.е. восприятие или ощущение, не обязательно связанное с какой-либо внешней реальностью. вернуться в текст
3. Самый простой пример такого понимания общего - теория групп разбирается Кассирером в связи с рядом современных ему представлений с психологией зрительного восприятия в [68]. Логическое правило, задающее группу, определяет множество ее элементов, о которых не нужно знать ничего, кроме того, что они отличны друг от друга. Именно таким логическим правилом может быть задана группа преобразований пространства в геометрии. Инварианты определенных таким способом преобразований могут быть, по мысли Кассирера также и инвариантами зрительного восприятия пространства. С другой стороны, этот способ понимания общего отнюдь не является изобретением Кассирера. Например, Боэций, описавший процедуру абстрагирования как возможное решение проблемы универсалий ([9], c.27-31), указал и такую возможность интерпретации общего, при котором оно не может быть ни субстанцией, ни чем-либо, сказывающимся о субстанции. Так, единая вещь, может быть общей многим различным и тогда, "когда она становится общей для всех одновременно, но тогда она не составляет субстанции тех, для кого является общей, как, например, театр или любое другое зрелище, общее для всех зрителей" ([9], c. 25). Даже если спектакль, объединяющий многих зрителей (и исполнителей), и не является строго определенной логической формой, то во всяком случае представляет собой единую систему отношений, сообразную некому замыслу. вернуться в текст
4. Кассирер показывает, что оппозиция "внутреннее - внешнее" есть порождение субстанционального подхода. Именно такой подход противопоставляет объективную вещь и субъективное представление о вещи. Это противопоставление порождает весьма тяжелую проблему адекватности представления вещи. Внешняя (объективная) реальность неизбежно должна быть трансцендентна субъекту. См. [32], c.349-400. вернуться в текст
5. Бернайс был по-видимому первым, кто ввел для обозначения рассматриваемого направления термин "платонизм", достаточно широко используемый в современной литературе. вернуться в текст
- Предыдущая
- 3/29
- Следующая
