Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Антарктида - Дралкин Александр Гаврилович - Страница 6
Кровля размягченного плавлением слоя мантии получила название астеносферы. Слои, лежащие выше и состоящие из твердого кристаллического вещества, называют литосферой. Таким образом, создается возможность скольжения твердой литосферы по размягченной поверхности астеносферы.
Литосфера представляется не цельной сферической оболочкой, подобной яичной скорлупе, а состоящей из некоторого числа плит, находящихся в непрерывном движении и несущих на себе материки. В такой схеме можно представить себе три основных типа движения. Первый тип – плиты раздвигаются. Такое движение называется дивергенцией. Второй тип – плиты движутся навстречу друг другу и сталкиваются, т. е. происходит конвергенция, при этом одна плита может поддвигаться под другую. Это явление называется субдукцией. Наконец, третий тип – плиты скользят параллельно друг другу. Каждый тип движения характеризуется специфическими явлениями. Все типы движения взаимно связаны и происходят одновременно.
Областью расхождения плит являются срединно-океанические хребты. Однако между расходящимися плитами не может образовываться пустота. Она заполняется нижележащей расплавленной магмой, которая, выходя на поверхность океана, застывает, образуя новые части океанического дна. Больше того, внутренние процессы в мантии, ее конвективные течения, по-видимому, являются тем механизмом, который заставляет раздвигаться океанические плиты. Так происходят нарастание дна океана и раздвижение плит. Доказательства этого – систематическое старение дна океана по мере удаления от срединного хребта, наличие реликтовых намагниченных пород и их старение по тому же закону. Плиты раздвигаются, скользя по астеносфере. При этом может перемещаться и сам срединный хребет, который не всегда имеет симметричное нарастание вновь образовавшейся коры. Отсутствие симметрии приводит к двум явлениям: образованию трансформных разломов, столь характерных для срединных хребтов, и общему перемещению хребта вместе с нарастающей корой. Очевидно, что, нарастая и раздвигаясь, плита приходит во взаимодействие с другими плитами. Это взаимодействие может иметь характер столкновения или проскальзывания.
Второй тип взаимодействия плит (столкновение, или конвергенция) также может иметь различный характер. Мы уже упоминали о возможности перемещения самого океанического хребта вследствие несимметричного разрастания дна и, в конечном итоге, поддвигания хребта при столкновении под другую плиту. Такой случай, по-видимому, имел место при столкновении древней океанической Тихоокеанской плиты Феникс с Южно-Американской, которое привело к образованию береговой горной цепи Анд.
Другое дело, когда просто сталкиваются движущиеся континентальная и океаническая плиты. В этом случае происходит нечто, совсем не похожее на предыдущий случай. Двигающаяся, или разрастающаяся, океаническая плита, встречая континентальную плиту, погружается под нее, образуя по фронту континента глубокий желоб, через который и происходит субдукция. В то же время из недр мантии поднимается выжимаемая плитой магма и отрывает краевую часть континента, расшатанную уже при поддвигании плиты. Эта краевая часть под давлением той же, поступающей из недр магмы отходит от континента, образуя островные дуги и между ними и материком – окраинные моря. За довольно молодое происхождение окраинных морей, островных дуг и континентальных желобов говорят мелководность этих морей, тонкий осадочный слой на их дне и большие отрицательные гравитационные аномалии над желобами. Будь эти образования древними, большой вынос осадков с континента давно бы заполнил эти моря или во всяком случае создал бы мощный слой осадков, а постоянно стремящаяся к равновесию земная кора выравняла бы отрицательные аномалии перемещением в область малых давлений более плотных масс. Характерным примером такого поддвигания является тихоокеанское побережье Азии с системой глубоководных впадин, желобов и островных дуг.
Подтверждением описанной схемы погружения океанической плиты под континент является распределение очагов землетрясений и теплового потока.
В распределении сейсмически активных областей видна определенная закономерность. Очаги землетрясений размещаются узкими полосами под островными дугами вдоль активных побережий; таковы западные побережья обеих Америк, срединно-океанические хребты, некоторые внутриконтинентальные горные области: Гималаи, Кавказ – Карпаты – Альпы, Скалистые горы Северной Америки. В других областях Земли очагов землетрясений практически нет.
Глубокофокусные землетрясения, лежащие на глубинах более 100 км, почти всегда приурочены к глубоководным желобам. Здесь же очень велика и сейсмическая активность на малых глубинах. Кстати, мелкофокусные землетрясения – наиболее разрушительны. Очаги землетрясений располагаются на наклоненной в сторону континента плоскости, получившей название зона Заварицкого – Беньофа до глубин 500–600 км. Это свидетельствует о том, что погружающаяся океаническая плита, по границам которой происходят землетрясения, остужает окружающую мантию до твердого состояния, при котором только и возможно накопление и мгновенное высвобождение энергии. По расчетам Мак-Кензи холодная плита толщиной 100 км при погружении в мантию со скоростью нескольких сантиметров в год может оставаться холодной до глубин 600–700 км.
Сила тяжести, направленная в сторону погружения тяжелой океанической плиты, и сила давления разрастающегося океанического дна под напором изливающейся магмы в срединном океаническом хребте – главные движущие силы при погружении плиты.
С линиями островных дуг совпадает и распределение вулканов. Однако вулканы в основном находятся на континентальной стороне островных дуг, тогда как подавляющее большинство очагов землетрясений – на океанической. Соответственно и тепловой поток имеет низкое значение с океанической стороны островной дуги и высокое – с континентальной. Над желобом он всегда низок. Отсутствие вулканов и низкий тепловой поток со стороны желоба и океанической стороны островной дуги, а также размещение мелкофокусных землетрясений с той же океанической стороны хорошо согласуются с идеей поддвигания холодной океанической плиты и опять же подтверждает концепцию тектоники плит. Однако с этих позиций пока необъясним факт высокого теплового потока и размещения вулканов со стороны континента.
Теория прямого столкновения континентальных плит разработана менее других теорий. В этом случае будут иметь место дробление пород, сминание их в складки, образование гор. По-видимому, в зоне прямого столкновения образовались Гималаи, Альпы, Кавказ.
Третий тип взаимодействия плит – это параллельное проскальзывание, при котором образуются трансформные разломы. Типичный пример такого движения – разлом Сан-Андреас в Калифорнии.
Экстраполируя разрастание дна океана в далекое прошлое, можно представить себе ряд циклов развития океана и орогенеза. Приняты три типа развития океанов: тихоокеанский, атлантический и средиземноморский. Тихоокеанский тип характеризуется наличием субдукции и образованием береговых горных цепей. Вследствие раздвижения континентов происходят постепенное закрытие Пра-Атлантического океана и образование праматерика Пангеи. В последующем Пангея раскололась, и начался новый цикл развития океана – атлантический. Для этого цикла характерно раздвижение дна океана от Атлантического срединного океанического хребта без субдукции. При этом нарастающие Атлантические плиты раздвигают окружающие их континенты и ведут к сокращению области Тихого океана, дно которого погружается под континенты.
При этих типах раздвижения океана происходит разрастание дна в области срединных хребтов.
При средиземноморском типе развития хребты отсутствуют, разрастания дна океана не происходит, но имеются границы поддвигания. Этот тип (если он существует), по-видимому, является переходным.
О механизме движения плит
В качестве механизма движения плит с самого рождения новой плитовой тектоники принималась конвекция в мантии. По мере возникновения трудностей в этом объяснении находились новые аргументы, позволяющие возродить казалось бы уже отвергнутый механизм. Первое сомнение – возможна ли конвекция в такой плотной и вязкой массе, как мантия Земли. На этот вопрос был дан положительный ответ в результате применения закона конвекции Рэлея. Согласно этому закону тепловая конвекция начинается тогда, когда безразмерная функция
- Предыдущая
- 6/39
- Следующая