Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Эгоистичный ген - Докинз Ричард - Страница 33
Как уже подчеркивалось в гл. 3, гены действительно обладают множественными эффектами. Теоретически возможно возникновение гена, детерминирующего какую-то внешнюю «метку», например бледную кожу, или зеленую бороду, или что-нибудь столь же приметное, и одновременно тенденцию особенно хорошо относиться к носителям такой метки. Это возможно, но маловероятно. С равной вероятностью зеленобородость может быть сцеплена со склонностью к врастанию ногтей на пальцах ног или с любым другим признаком, а симпатия к зеленым бородам — с неспособностью воспринимать аромат фрезий. Маловероятно, чтобы один и тот же ген детерминировал данную метку и соответствующий ей тип альтруизма. Тем не менее то, что можно было бы назвать «эффектом альтруизма к зеленой бороде», теоретически допустимо.
Произвольная метка вроде зеленой бороды — просто один из способов, с помощью которого ген мог бы «узнавать» о наличии в других индивидуумах копий самого себя. Есть ли какие-либо другие способы?
Да, и наиболее прямой из них состоит в следующем. Обладателя какого-либо альтруистичного гена можно было бы узнать просто потому, что он совершает альтруистичные акты. Ген мог бы процветать в генофонде, если бы он «сказал» своему телу нечто вроде: «Тело, если A тонет при попытке спасти кого-то другого, прыгай и спасай А». Причина, по которой такой ген мог бы действовать столь благородно, состоит в том, что вероятность наличия у A тех же самых альтруистичных генов — генов-спасателей — выше, чем средняя. Тот факт, что A пытался спасти кого-то другого, представляет собой метку, эквивалентную зеленой бороде. Она менее надуманна, чем зеленая борода, но тем не менее кажется довольно неправдоподобной. Существуют ли какие-то заслуживающие доверия способы, которые позволяли бы генам «узнавать» свои копии в других индивидуумах?
Да, существуют. Нетрудно показать, что у близких родственников вероятность наличия общих генов выше средней. Давно стало ясно, что именно по этой причине столь обычен альтруизм родителей по отношению к своим детям. А Р. Фишер, Дж. Холдейн и в особенности У. Гамильтон поняли, что это распространяется и на других близких родственников — сестер и братьев, как родных, так и двоюродных, племянников и племянниц. Если индивидуум умирает, чтобы спасти десять близких родственников, то одна копия гена, определяющего альтруизм в отношении близких родственников (кин-альтруизм), может погибнуть, однако гораздо большее число копий того же гена будет спасено.
«Большее число» — это весьма неопределенно, равно как и «близкие родственники». Как показал Гамильтон, возможна и большая определенность. Две его работы, опубликованные в 1964 г., принадлежат к числу самых значительных вкладов в социальную этологию из когда-либо написанных, и я никогда не мог понять, почему этологи так пренебрегают этими работами (имя Гамильтона даже не упоминается в указателях двух больших учебников этологии, опубликованных в 1970 г.)[6.1]. К счастью, в последнее время интерес к его идеям начинает возрождаться. Работы Гамильтона насыщены математикой, однако их основные принципы схватываются интуитивно, без строгих математических рассуждений, хотя при этом неизбежно некоторое переупрощение. Нам предстоит вычислить вероятность наличия данного определенного гена у двух индивидуумов, например у двух сестер.
Допустим для простоты, что мы рассматриваем гены, редко встречающиеся в генофонде в целом[6.2]. У большинства людей имеется «ген, определяющий невозможность быть альбиносом», независимо от того, связаны люди родством или нет. Такое широкое распространение этого гена объясняется тем, что в природе вероятность выживания для альбиносов ниже, чем для неальбиносов, хотя бы потому, что солнце ослепляет их и им относительно трудно заметить приближающегося хищника. Нас не интересуют причины преобладания в генофонде таких явно «хороших» генов, как ген «неальбинизма». Мы стремимся объяснить успех генов, обусловленный именно их альтруизмом. Поэтому мы можем допустить, что по крайней мере на ранних стадиях этого эволюционного процесса такие гены редки. Здесь важно отметить, что даже ген, редкий в популяции в целом, может часто встречаться в отдельной семье. И у меня, и у вас имеется некоторое число генов, редко встречающихся в популяции в целом. Шансов на то, что вы и я несем одинаковые редкие гены, очень мало. Однако весьма вероятно, что у моей сестры имеется тот же самый редкий ген, что и у меня, и столь же вероятно, что вы и ваша сестра тоже несете один и тот же редкий ген; шансы в данном случае составляют ровно 50%, и объяснить причины этого нетрудно.
Допустим, что в вашем генотипе имеется одна копия гена G. Вы могли получить ее либо от своего отца, либо от матери (для простоты можно отбросить различные редко встречающиеся возможности: что ген G — новая мутация; что этот ген имелся у обоих ваших родителей или же в двойной дозе у одного из них). Пусть вы получили ген G от своего отца. В таком случае каждая из обычных клеток его тела содержала по одной копии этого гена. Как вы, вероятно, помните, каждый сперматозоид, образующийся у мужчины, содержит половину его генов. Таким образом, вероятность того, что в сперматозоид, зачавший вашу сестру, попадает ген G, равна 50%. Если же вы получили ген G от своей матери, то из точно таких же рассуждений вытекает, что половина ее яйцеклеток должна была содержать ген G, и опять-таки вероятность получения гена G вашей сестрой равна 50%. Это означает, что если у вас есть 100 братьев и сестер, то примерно 50 из них должны обладать любым имеющимся у вас редким геном. Это означает также, что если у вас есть 100 редких генов, то примерно 50 из них имеются в теле любого из ваших братьев или сестер.
Аналогичные вычисления можно произвести для лиц, связанных родством любой степени. Важные зависимости существуют между родителями и детьми. Если у вас имеется одна доза гена J, то вероятность наличия этого гена у каждого из ваших детей равна 50%, потому что он содержится в половине ваших половых клеток, а каждый из ваших детей был зачат при участии одной из этих половых клеток. Если у вас имеется одна доза гена J, то вероятность того, что этот ген имелся также у вашего отца, равна 50%, потому что вы получили половину своих генов от него, а половину — от матери. Для удобства мы пользуемся коэффициентом родства, выражающим вероятность наличия данного гена у двух родственников. Коэффициент родства между двумя братьями равен 1/2, поскольку половина генов, имеющихся у одного из братьев, будет обнаружена и у другого. Это средняя цифра: в результате мейотического драйва у данных двух братьев может быть больше или меньше общих генов. Коэффициент родства между родителем и ребенком всегда равен точно 1/2.
Проделывать всякий раз все эти вычисления с самого начала довольно скучно. Существует грубое, но эффективное правило для установления коэффициента родства между двумя индивидуумами, А и B. Оно может оказаться вам полезным при составлении завещания или для объяснения явных случаев сходства в семье. Оно пригодно для всех простых ситуаций, но не действует при кровосмесительных браках и, как мы увидим, у некоторых насекомых.
Установим сначала всех общих предков A и B. Например, общие предки двух двоюродных братьев или сестер — это их общие дед и бабка. По логике вещей все предки этих общих предков также будут общими для A и B. Однако мы пренебрежем всеми общими предками, кроме самых недавних. В этом смысле у двоюродных братьев и сестер только два общих предка. Если 5-прямой потомок A, например его правнук, то сам A и есть тот «общий предок», которого мы ищем.
Найдя общего предка(ов) А и B, займемся вычислением генерационного расстояния (число разделяющих поколений) между ними. Для этого, начав с A, нужно взобраться вверх по генеалогическому древу до общего предка, а затем спуститься вниз до B. Суммарное число шагов вверх, а затем вниз по древу и составит генерационное расстояние. Если, например, А приходится B дядей, то генерационное расстояние равно 3. Общий предок в данном случае — отец A и дед B. Начав с A, вам следует подняться на одно поколение, чтобы дойти до общего предка. Затем, чтобы дойти до B, вы должны спуститься на два поколения на другой стороне древа. Поэтому генерационное расстояние равно 1 + 2 = 3.
- Предыдущая
- 33/90
- Следующая