Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Вечность. В поисках окончательной теории времени - Кэрролл Шон - Страница 54


54
Изменить размер шрифта:

Энтропия кажется естественным образом связанной с понятием беспорядка, потому что чаще всего путей создания беспорядка больше, чем путей упорядочения объектов. Классический пример роста энтропии — распределение документов на рабочем столе. Вы складываете их в аккуратные стопки — приводите в порядок, в состояние с низкой энтропией, но со временем они расползаются по столу — порядок утерян, энтропия возросла. Конечно, ваш стол нельзя назвать замкнутой системой, но основная идея, думаю, понятна.

С другой стороны, если слишком налегать на ассоциации, можно опровергнуть свои же идеи. Взять, например, молекулы воздуха в комнате, где вы сидите прямо сейчас. Скорее всего, они равномерно распределены по всему объему помещения и образуют высокоэнтропийную конфигурацию. Теперь представьте себе, что все молекулы собрались в центре комнаты в небольшой области всего лишь в несколько сантиметров шириной и к тому же выстроились в фигуру, повторяющую Статую Свободы, только в миниатюрном варианте. Неудивительно, что энтропия такой конфигурации намного ниже, и все согласятся, что порядка в ней намного больше. Но попробуем зайти еще дальше: пусть газ сожмется еще сильнее и соберется в крохотную аморфную кляксу диаметром не больше одного миллиметра. Поскольку область пространства, в которой теперь сконцентрирован весь газ, стала еще меньше, энтропия новой конфигурации также уменьшилась по сравнению с конфигурацией «Статуя Свободы» (расположить молекулы так, чтобы они образовали статуэтку среднего размера, можно куда большим числом способов, чем собрать их в очень маленькую кляксу). Однако вряд ли кто-то будет утверждать, что аморфная клякса более «упорядочена», чем копия знаменитого памятника, даже если эта клякса действительно крайне мала. Получается, что в данном случае корреляция между упорядоченностью и малой энтропией отсутствует, так что нам следует быть более осторожными с выбором примеров.

Этот пример кажется несколько надуманным, и действительно, совсем не нужно так изощряться, чтобы опровергнуть утверждение об эквивалентности энтропии и беспорядка. Продолжая серию кухонных примеров, рассмотрим масло и уксус. Если вы смешаете эти два ингредиента в чашке, готовя заправку для салата, а затем отставите посудину в сторону, то заметите, что смесь очень быстро перестает быть однородной — масло отделяется от уксуса. Не бойтесь, это не означает, что салатная заправка способна нарушить второе начало термодинамики. Уксус в основном состоит из воды, а молекулы воды прилипают к молекулам масла, и, в силу определенных химических свойств масла и воды, они способны образовывать при этом лишь строго определенные конфигурации. Таким образом, когда вы тщательно перемешиваете масло с водой (или с уксусом), молекулы воды прилипают к молекулам масла в очень специальных конфигурациях, соответствующих состоянию с относительно низкой энтропией. Когда же две субстанции по большей части разделены, отдельные молекулы получают возможность свободно перемещаться между другими молекулами того же типа. При комнатной температуре это приводит к тому, что у масла с водой энтропия выше в конфигурации, когда они разделены, а не когда их старательно перемешали.[143] Порядок спонтанно возникает на макроскопическом уровне, но по сути — на микроскопическом уровне — это банальнейший беспорядок.

В по-настоящему больших системах все еще сложнее. Давайте перейдем от газа, содержащегося в одном небольшом помещении, к облаку газа и пыли астрономических масштабов — скажем, галактической туманности. Она производит впечатление весьма хаотичного и высокоэнтропийного объекта. Однако если размер туманности достаточно велик, она начинает сжиматься под давлением собственной гравитации, в результате чего формируется звезда — возможно, даже с вращающимися вокруг нее планетами. Поскольку этот процесс подчиняется второму началу термодинамики, мы можем быть уверены в том, что в конце него энтропия выше, чем была в начале (мы старательно учитываем все порожденное коллапсом излучение и другие побочные эффекты). Но звезда с несколькими планетами кажется, по крайней мере с неформальной точки зрения, более упорядоченной системой, чем рассредоточенное межзвездное облако газа. Энтропия увеличилась, но точно так же возросла степень упорядоченности.

Хитрость в данном случае в гравитации. Можно бесконечно говорить о том, как гравитация в пух и прах разносит наше бытовое понимание энтропии, но достаточно будет заметить, что взаимодействие гравитации с другими силами обладает чудесной способностью создавать порядок, одновременно, тем не менее, повышая энтропию — хотя бы и временно. Это великолепная подсказка, дающая понять, как работает Вселенная; жаль только, что пока наших знаний недостаточно для того, чтобы ею воспользоваться.

Пока давайте просто запомним, что связка «энтропия — беспорядок» не идеальна. В этом нет ничего страшного, и мы можем продолжать неформально объяснять понятие энтропии на примере захламленного рабочего стола. Однако что в действительности сообщает нам энтропия, так это сколько микросостояний с макроскопической точки зрения кажутся нам неразличимыми. Иногда это напрямую связано с порядком, а иногда нет.

Принцип безразличия

С больцмановским подходом ко второму началу термодинамики связаны еще два надоедливых вопроса, которые не мешало бы прояснить или, по крайней мере, о которых стоит упомянуть. Итак, у нас есть огромный набор микросостояний, который мы подразделяем на макросостояния, и мы объявляем, что энтропия равна логарифму числа микросостояний в данном макросостоянии. Теперь нам предлагают добавить еще один существенный факт — предположение о том, что все микросостояния, отвечающие одному и тому же макросостоянию, «равновероятны».

Следуя по цепочке рассуждений Больцмана, логично было бы утверждать, что причина возрастания энтропии со временем кроется всего-навсего в количестве микросостояний: куда больше микросостояний образуют макросостояния с высокой энтропией, чем с низкой. Однако это утверждение не имело бы никакого смысла, если бы типичная система проводила намного больше времени в низкоэнтропийных микросостояниях (а их относительно немного), чем в высокоэнтропийных (которых гораздо больше). Представьте себе, будто у микроскопических законов физики появилось новое свойство: почти все высокоэнтропийные состояния естественным образом переходят в одно из немногих низкоэнтропийных состояний. В таком случае тот факт, что состояний с высокой энтропией больше, не играл бы совершенно никакой роли; мы все равно знали бы, что если подождать достаточно долго, то энтропия в системе понизится.

Несложно вообразить мир с подобными безумными законами физики. Давайте еще раз вернемся к бильярдному столу с катающимися по нему шарами. Шары перемещаются по столу совершенно обычным образом, за одним важным исключением: каждый раз, когда шар врезается в какой-то один бортик стола, он мгновенно к нему прилипает. (Мы предполагаем, что в нашем мысленном эксперименте нет злоумышленника, намазавшего бортик клеем, или еще чего-то подобного, демонстрирующего, тем не менее, обратимое поведение на микроскопическом уровне, — в данном случае мы вводим совершенно новый фундаментальный закон физики.) Обратите внимание на то, что пространство состояний этих бильярдных шаров абсолютно такое же, каким оно было бы в традиционном мире: зная положение и импульс каждого шара, мы можем с идеальной точностью предсказать их будущее. Тонкость лишь в том, что с громадной вероятностью в конце эволюции этой системы все шары будут находиться возле одного из бортиков. Энтропия такой конфигурации чрезвычайно низка; подобных микросостояний совсем немного. В таком мире энтропия могла бы спонтанно уменьшиться даже в замкнутой системе, такой как бильярдный стол.

Совершенно очевидно, что в этом примере, хоть и притянутом за уши, фигурирует новшество: необратимый закон физики. А сама система очень напоминает шахматную доску D из предыдущей главы: там диагональные линии серых квадратиков обрывались после соприкосновения с одним из вертикальных столбцов. Информации о положениях и импульсах всех шаров на этом забавном столе достаточно для того, чтобы предсказывать будущее, но восстановить прошлое она не позволит. Увидев шар, лежащий рядом с бортиком, мы уже не сможем узнать, как долго он там находится.