Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Бесконечный регресс и основания математики (ЛП) - Лакатос Имре - Страница 8
Таким образом, гильбертовская программа тривиализации на метауровне коллапсировала. Но вскоре началась мощная кампания, направленная на заполнение пробелов. Генцен внес вклад в это заполнение пробелов, предложив свое остроумное доказательство непротиворечивости, за что и бились гильбертианцы, доказательство, находящееся в согласии с минимальными стандартами гёделевской утонченности и еще не переступившие границ тривиальности.*[27] Некоторые результаты Тарского обозначили путь, позволявший заполнить пробелы в проблематике полноты теории (Tarski, 1956, р. 276-277):
"Определение истины и, более широко, установление семантики позволяет нам блокировать некоторые негативные результаты, которые были получены в методологии дедуктивных наук, параллельными позитивными результатами и таким образом заполнить до некоторой степени [курсив мой ― И.Л.] пробелы, обнаруженные в дедуктивном методе и в конструкции самого дедуктивного знания".
К сожалению, некоторые логики склонны игнорировать эту осторожную квалификацию Тарского. В недавно изданном учебнике мы читаем, что гёделевский "негативный" (sic) результат был блокирован позитивным результатом Тарского (Stegmüller, 1957, S. 253). Автор прав, оставив слово "позитивный" без кавычек, в которые заключил бы его скептик, но зачем слово "негативный" заключать в кавычки?
Итак, резиновый евклидианизм вышел снова на авансцену, вышел в наше время, обнаруживая себя в качестве новой партийной линии постгильбертианцев. Забавно, какой утонченной может быть тривиальность. Самоочевидность, коль скоро она принята, оказывается, разумеется, растяжимой, и проверить высказывание на самоочевидную истину то же самое, что проверить его на истину ― показать, что оно внутренне противоречиво или ложно. Если мы отказываемся растягивать интуицию до бесконечности, нам придется признать, что метаматематика не останавливает бесконечный регресс в доказательстве, который возникает теперь в виде бесконечной иерархии все более богатых метатеорий (первая теорема Гёделя представляет собой по своей сути принцип сохранения утонченности или принцип сохранения погрешимости). Но это не обязывает нас впадать в математический скептицизм: мы только признаем погрешимость смелых спекуляций. Доказательство непротиворечивости Генценом, как и семантические результаты Тарского, действительные, а не пирровы (как называл их Вейль) (Weyl, 1949, р. 222) победы, они являются таковыми, даже если принимается не только "существенно более низкий стандарт очевидности" (ibid), но и определенно предположительный характер новых методов. Поскольку метаматематика растет, ее утонченная тривиальность становится все более утонченной и менее тривиальной. Тривиальность и достоверность суть Kinderkrankheiten*[28] знания.
Подчеркнем еще раз, что евклидианец и после любого поражения может всегда прибегнуть к своему оружию: либо обнадеживая найти выше действительные первые принципы, либо совершив некоторое логическое или эпистемологическое сальто-мортале, оглупляя верой в то, что то, что на деле оказывается погрешимой спекуляцией, есть очевидная истина. В логицистской программе любимым сальто-мортале была индукция. Гильбертовское сальто-мортале ― мольба обреченного о вере в новое снисхождение и неожиданное и поистине удивительное воцарение метаматематической резиновой интуиции, которая сначала была финитной брауэрианской, затем трансфинитной генценианской и даже семантической тарскианской. Мы читаем в одной из самых компетентных книг, написанных на эту тему, что "окончательным (sic) критерием допустимости некоторого метода в метаматематике должна быть, конечно (sic), его интуитивная убедительность" (Kleene, 1952, р. 63; Клини, 1957, с. 62). Но почему тогда мы не остановились шагом раньше, почему не заявили, что окончательным критерием определения того, приемлем ли метод в арифметике, должна, конечно, быть интуитивная убедительность, и не отбросили вообще метаматематику, как это сделал Бурбаки (Bourbaki, 1949, р. 8). Метаматематика, как и расселовская логика, происходит из критики интуиции; теперь метаматематики, как раньше логицисты, просят нас принять их интуицию как "окончательный" критерий, следовательно, отбрасывают нас к тому же субъективному психологизму, который они раньше критиковали. Но почему на Земле появились "окончательные" критерии и "высшие" авторитеты? Зачем нам основания, если мы сознаем их субъективность? Почему не принять честно математическую погрешимость и не постараться защитить достоинство погрешимого знания от циничного скептицизма, а обманываться относительно того, что мы могли бы незаметно заделать новую дыру в машине "окончательных" интуиций?
ЦИТИРОВАННАЯ ЛИТЕРАТУРА
Вейль Г. Избранные труды. М.: Наука, 1984.
Гильберт Д. Основания геометрии. М.: Гостехиздат, 1948.
Гюйгенс X. Трактат о свете// Пер. с англ. Н. Фредерикса, 1935.
Клини С. Введение в метаматематику. М.: Изд-во иностр. лит., 1957.
Лейбниц Г.В. Сочинения. В 4 т. М.: Мысль, 1984. Т. 3.
Рассел Б. Новейшие работы о началах математики // Новые идеи в математике. / Под ред. А.В. Васильева. 1913. № 1. С. 82-105.
Рассел Б. Проблемы философии. СПб., 1914.
Рассел Б. Человеческое познание. Его сферы и границы. М.: Изд-во иностр. лит., 1957.
Abel N.H. Letter to Hansteen // S. Lie and L. Sylow (eds.): Oeuvres Completes. 1826. Vol. 2. P. 263-5. Christiana: Grondahl, 1881.
Bourbaki N. The Foundations of Mathematics for the Working Scientist // Journal of Symbolic Logic. 1949. VoL 14. P. 1-8.
Braithwaite R.B. Scientific Explanation. Cambridge: University Press, 1953.
Fraenkel A.A. Zehn Vorlesungen Über die Grundlegung der Mengenlehre. Leipzig, Berlin: B.G. Teubner, 1927.
Frege G. Grundgesetze der Arithmetik. Jena. 1893. Bd. I.
Huyghens C. Treatise on Light University of Chicago Press, 1945.
Kemeny J. Undecidable Problems in Elementary Number Theory // Mathematische Annalen. 1958. Vol. 135. P. 160-169.
Kemeny J. A Philosopher Looks at Science. Princeton: Van Nostrand, 1959.
Kleene S.C. Introduction to Metamathematics. Amsterdam: North Holland, 1952.
Lakatos I. Essays in the Logic of Mathematical Discovery: Unpublished PhD dissertation. Cambridge, 1961.
Neumann J. von. Zur Hilbertischen Beweistheorie // Mathematische Zeitschrift. 1927. Bd 26. S.1-46.
Pascal B. Les Reflexions sur la Geometrie en General (1667-1658) // J. Chevalier (ed.): Oeuvres Completes, p. 575-604. Paris: La Librairie Galliard, 1954.
Popper K.R. The Logic of Scientific Discovery. London: Hutchinson, 1959.
Ramsey F.P. The Foundations of Mathematics and other Essays / Edited by R.B. Braithwaite. London: Kegan Paul, 1931.
Ramsey F.P. Mathematical Logic // The Mathematical Gazette. 1926. Ns 13. P. 185-194. Перепечатано в: Ramsey F.P. The Foundations of Mathematics.
Robinson R. Plato's Earlier Dialectic. Second edition. Oxford: Clarendon Press, 1953.
Russell B.A.W. Review of G. Heyman's: Die Gesetze und Elemente des Wissenschaftlichen Denkens // Mind, 1895. JSTs 4. S. 245-9.
Russell B.A.W. The Logic of Geometry // 1896. Mind. Ns 5. P.1-23.
Russell B.A.W. Recent Work in the Philosophy of Mathematics // The International Monthly. 1901. Vol. 3. Перепечатано под названием "Mathematics and the Metaphysician" b: Mysticism and Logic. London: George Alien and Unwin, 1917.
Russell B.A.W. Principles of Mathematics. London: George Alien and Unwin, 1903.
- Предыдущая
- 8/9
- Следующая
