Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Диалектический материализм - Энгельс Фридрих - Страница 141
Естествоиспытатели и философы до сих пор совершенно пренебрегали исследованием влияния деятельности человека на его мышление; они знают, с одной стороны, только природу, а с другой — только мысль. Но существеннейшей и первой основой человеческого мышления является как раз изменение природы человеком, а не одна природа как таковая, и разум человека развивался пропорционально тому, как он научался изменять природу. (Энгельс, Диалектика природы, стр. 14 — 15, 1932 г.)
Возникновение и развитие чистой математики связано с развитием общественного производства и наук
Относительно всей чистой математики господин Дюринг думает, что он может ее — как и основные формы бытия — вывести априорно, т. е. прямо из головы, не прибегая к опыту из внешнего мира. В чистой математике, уверяет он, рассудок занимается «своими собственными свободными творениями и фантазиями»; понятия числа и фигуры составляют «достаточный для нее и создаваемый ей самой объект», и, таким образом, она имеет «значимость, не зависящую от частного опыта и реального содержания мира.
Что чистая математика имеет значимость, не зависящую от специального опыта каждой отдельной личности, это, конечно, верно и применимо ко всем прочно установленным фактам всех наук, да и вообще ко всем фактам. Магнитные полюсы, состав воды из водорода и кислорода, тот факт, что Гегель мертв, а господин Дюринг жив, имеют значимость независимо от моего опыта или опыта других отдельных людей, даже независимо от опыта господина Дюринга, когда он спит сном праведника. Но отсюда вовсе не следует, что рассудок в чистой математике имеет дело только со своими «собственными творениями и фантазиями». Понятия числа и фигуры заимствованы именно из действительного мира. Десять пальцев, на которых люди учились считать, т. е. производить первое арифметическое действие, представляют что угодно, но только не свободное творение рассудка. Для счета необходимы не только объекты счета, но также уже и способность при рассмотрении этих объектов отвлекаться от всех их свойств, кроме их числа, а эта способность — продукт долгого исторического эмпирического развития. Понятие фигуры, как и понятие числа, заимствовано исключительно из внешнего мира, а не возникло вовсе в голове из чистого мышления. Раньше, чем люди могли прийти к понятию фигуры, должны были существовать вещи, которые имели форму и формы которых сравнивали. Чистая математика имеет своим предметом пространственные формы и количественные отношения действительного мира, т. е. весьма реальное содержание. Тот факт, что это содержание проявляется в крайне абстрактной форме, может лишь слабо затушевать его происхождение из внешнего мира. Чтобы изучить эти формы и отношения в их чистом виде, следует их оторвать совершенно от их содержания, устранить его как нечто безразличное для дела. Так получаются точки без протяжения, линии без толщины и ширины, а и b, х и у, постоянные и переменные, лишь в самом конце мы приходим к настоящим «свободным творениям и фантазиям» рассудка, именно к мнимым величинам. Точно так же выведение математических величин как будто бы друг из друга доказывает не их априорное происхождение, но только их рациональную связь. Прежде чем пришли к мысли выводить форму цилиндра из вращения прямоугольника вокруг одной из его сторон, нужно было исследовать немало реальных прямоугольников и цилиндров, хотя бы и в весьма несовершенной форме. Как и прочие науки, математика возникла из потребностей человека: из измерения земли и вместимости сосудов, из исчисления времени и механики. Но, как и во всех областях мышления, отвлеченные из действительного мира законы на известной ступени развития отрываются от действительного мира, противопоставляются ему как нечто самостоятельное, как явившиеся извне законы, по которым должен направляться мир. Так было с обществом и государством; так, а не иначе, применяется впоследствии чистая математика к миру, хотя она и заимствована из этого мира и представляет только часть его составных форм, и, собственно, только поэтому она вообще применима к нему...
Математические аксиомы представляют собой выражения крайне скудного умственного содержания, которое математика должна заимствовать у логики. Их можно свести к двум следующим аксиомам:
1. Целое больше части. Это положение есть чистая тавтология, так как взятое в количественном смысле представление «часть» уже заранее отнесено определенным образом к представлению «целое», — именно так, что понятие «часть» означает попросту, что количественное «целое» состоит из нескольких количественных «частей». Оттого, что указанная аксиома выражает это явным образом, мы ни на шаг не подвигаемся дальше. Можно даже известным образом доказать эту тавтологию, можно сказать: целое есть то, что состоит из нескольких частей; часть есть то, несколько экземпляров чего составляет целое, следовательно, часть меньше целого. Ясно, что благодаря пустоте повторения здесь только резче проявляется пустота содержания.
2. Если две величины равны третьей, то они равны между собой. Это положение, как показал еще Гегель, представляет собой умозаключение, за правильность которого ручается логика; оно, значит, доказывается, хотя и вне области чистой математики. Прочие аксиомы о равенстве и неравенстве являются просто логическим развитием этого умозаключения.
Этими тощими положениями ни в математике, ни где-либо вообще никого не соблазнишь. Чтобы двинуться дальше, мы должны привлечь реальные отношения, отношения и пространственные формы, взятые из реальных тел. Все представления о линиях, поверхностях, углах, о многоугольниках, кубах, шарах и т. д. заимствованы из действительности, и нужна известная доза идеологической наивности, чтобы поверить математикам, будто первая линия возникла от движения точки в пространстве, первая поверхность — от движения линии, первое тело — от движения поверхности и т. д. Уже язык протестует против этого. Математическая фигура трех измерений называется телом, corpus solidum, что по-латыни означает даже осязаемое тело, т. е. она носит название, являющееся продуктом не «свободной фантазии» рассудка, а взятое из грубой действительности. (Энгельс, Анти-Дюринг, стр. 25 — 27, 1932 г.)
Единство теории и практики
Идея есть «истина» (стр. 385, § 213). Идея, т. е. истина, как процесс — ибо истина есть процесс — проходит в своем развитии три ступени: 1) жизнь; 2) процесс познания, включающий практику человека и технику (см. выше), — 3) ступень абсолютной идеи (т. е. полной истины).
Жизнь рождает мозг. В мозгу человека отражается природа. Проверяя и применяя в практике своей и в технике правильность этих отражений, человек приходит к объективной истине. («Ленинский сборник» IX, стр. 237.)
Истина есть процесс. От субъективной идеи человек идет к объективной истине через «практику» (и технику).
Единство теоретической идеи (познания) и практики — это NB — и это единство именно в теории познания, ибо в сумме получается «абсолютная идея» (а идея = «объективная истина» [том V, [143]]). («Ленинский сборник» IX, стр. 271, изд. 1-е.)
Деятельность человека, составившего себе объективную (NB) картину мира, изменяет внешнюю действительность, уничтожает ее определенность (= меняет те или иные ее стороны, качества), и таким образом отнимает у нее черты кажимости, внешности и ничтожности (NB), делает ее само-в-себе и само-для-себя сущей (= объективной истиной). («Ленинский сборник» IX, стр. 269, изд. 1-е.)
Практика выше (теоретического) познания, ибо она имеет не только достоинство всеобщности, но и непосредственной действительности. («Ленинский сборник» IX, стр. 261, изд., 1-е.)
- Предыдущая
- 141/230
- Следующая
