Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Скрытая реальность. Параллельные миры и глубинные законы космоса - Грин Брайан - Страница 30
Возможные эксперименты ранжируются от экспериментов по физике частиц на Большом адронном коллайдере (поиск суперсимметричных частиц и указаний на дополнительные измерения) до настольных экспериментов (измерение силы гравитационного притяжения на расстояниях одной миллионной доли метра и даже меньше) и астрономических наблюдений (поиск определённых типов гравитационных волн и малых температурных колебаний реликтового излучения). В табл. 4.1 объясняются разные подходы, но общая оценка легко прослеживается. Положительный исход любого из этих экспериментов может быть объяснён без привлечения теории струн. Например, хотя математическое описание суперсимметрии (см. первую строчку в табл. 4.1) изначально было открыто в теоретических исследованиях по теории струн, с тех пор оно также используется в неструнных теоретических моделях. Таким образом, открытие суперсимметричных частиц станет подтверждением теории струн, но не бесспорным доказательством. Аналогично, хотя дополнительные пространственные измерения естественным образом возникают в теории струн, они также возникают и в неструнных моделях (мы помним, что Калуца, предлагая свою идею, совсем не думал о теории струн). Поэтому самой благоприятной следует рассматривать такую ситуацию, где будет получен ряд положительных результатов из тех, что приведены в табл. 4.1, которые подтвердят правильность теории в разных её проявлениях. И как в примере с печатью текста пальцами ног, неструнные объяснения окажутся надуманными перед лицом целого набора положительных результатов.
Отрицательные результаты экспериментов гораздо менее полезны. Провал в поисках суперсимметричных частиц может означать, что они не существуют или что они слишком тяжёлые, чтобы быть обнаруженными даже на Большом адронном коллайдере; провал в поисках свидетельств существования дополнительных измерений может означать, что они не существуют или что они слишком малы, чтобы быть доступными нашим технологиям; провал в поисках микроскопических чёрных дыр может означать, что гравитация не становится сильнее на малых расстояниях, или что наши ускорители недостаточно мощные для более глубокого проникновения в микромир; провал в поисках струнных проявлений в наблюдениях гравитационных волн или реликтового излучения может означать неправильность теории струн, или что эти проявления слишком малы, чтобы быть измеренным на современном оборудовании.
На сегодняшний день наиболее вероятно, что даже самые многообещающие положительные результаты экспериментов не смогут определённо подтвердить правоту теории струн, а отрицательные результаты, скорее всего, не смогут её опровергнуть.{34} При этом надо не ошибиться. Если мы обнаружим доказательства существования дополнительных измерений, суперсимметрии, чёрных мини-дыр или любого из других возможных проявлений теории струн, это станет важной вехой в поиске единой теории. Это придаст нам уверенность, что избранная нами математическая дорога ведёт в правильном направлении.
Теория струн, сингулярности и чёрные дыры
В большинстве ситуаций квантовая механика и гравитация успешно игнорируют друг друга, при этом первая применяется к малым объектам, таким как молекулы и атомы, а вторая к большим объектам, соразмерным звёздам и галактикам. Однако обе теории вынуждены встречаться в мирах, известных как сингулярности. Сингулярность — это любая физическая ситуация, реальная или гипотетическая, которая настолько экстремальна (огромные массы, малый размер, гигантская кривизна пространства, проколы или разрывы в самой пространственно-временной структуре), что квантовая механика и общая теория относительности ведут себя неадекватно, выдавая результаты, сродни сообщению об ошибке на экране калькулятора при попытке разделить на ноль.
Цель любой квантовой теории гравитации состоит в том, чтобы свести воедино квантовую механику и гравитацию таким образом, чтобы сингулярности исчезли. Разработанный математический аппарат должен быть непротиворечив даже в момент Большого взрыва или в центре чёрной дыры[25] и давать разумное описание ситуаций, которые в течение длительного времени ставили исследователей в тупик. Именно в этом направлении теория струн достигла своих самых впечатляющих успехов, уменьшив список сингулярностей.
В середине 1980-х годов группа исследователей, состоящая из Ланса Диксона, Джеффа Харви, Кумруна Вафы и Эдварда Виттена, пришла к выводу, что некоторые проколы в ткани пространства (называемые сингулярностями орбифолда), которые доставляли много хлопот уравнениям Эйнштейна, прекрасно ведут себя в теории струн. Ключ к успеху состоял в том, что струна в отличие от точечной частицы не может свалиться в такой прокол. Поскольку струна — это протяжённый объект, она может удариться о прокол, может обмотаться вокруг него либо воткнуться в него, но подобного рода умеренные взаимодействия совершенно не портят уравнения теории струн. Это важно не потому, что такие изъяны в пространстве действительно имеют место — может, да, а может, и нет, — а потому, что именно таких свойств мы хотим от квантовой теории гравитации: способности работать осмысленно в ситуации, когда по отдельности отказывают как общая теория относительности, так и квантовая механика.
В 1990-х годах в нашей работе с Полом Аспинволлом и Дэвидом Моррисоном, а также независимо Эдвардом Виттеном было установлено, что более сильные сингулярности (известные как флоп-сингулярности), возникающие при сжатии сферической области пространства до бесконечно малого размера, тоже описываются теорией струн. Интуиция подсказывает, что струна при движении может накрутиться на такую сжатую область пространства, подобно обручу на мыльный пузырь, создавая нечто вроде кругового ограждения. Вычисления показывают, что такой «струнный щит» сводит на нет любые потенциально разрушительные последствия и гарантирует, что уравнения теории струн остаются непротиворечивыми — никаких ошибок типа «1 разделить на 0», — даже когда отказывают уравнения общей теории относительности.
За прошедшие годы исследователи показали, что множество других, более сложных сингулярностей (с названиями конифолд, ориентифолд, энханкон и так далее) также полностью контролируются теорией струн. Таким образом, имеется растущий список ситуаций, в которых Эйнштейн, Бор, Гейзенберг, Уилер и Фейнман воскликнули бы: «Мы просто не понимаем, что происходит!», но теория струн даёт полный и непротиворечивый ответ.
Достигнут значительный прогресс. Но остаётся проблема устранения с помощью теории струн сингулярностей чёрных дыр и Большого взрыва, более суровых, чем рассмотренные ранее. Идя к этой цели, теоретики приложили немало усилий, и они добились значительных успехов. Но если подытожить, то впереди ещё долгий путь, прежде чем наиболее трудные и важные сингулярности будут полностью осознаны.
Тем не менее одно важное открытие пролило свет на теорию чёрных дыр. В 1970-х годах в работах Якоба Бекенштейна и Стивена Хокинга было установлено, что чёрные дыры обладают определённой степенью беспорядка, известной как энтропия (см. главу 9). Подобно тому как беспорядок, царящий в ящике для носков, отражает множество способов их случайного расположения, так и беспорядок внутри чёрной дыры, согласно фундаментальным физическим законам, свидетельствует о множестве вариантов случайного размещения её внутренностей. Однако даже после долгих усилий физикам не удалось достаточно хорошо разобраться в том, как устроены внутренности чёрных дыр, не говоря уж о том, чтобы проанализировать возможные способы их размещения. Струнные теоретики Эндрю Строминджер и Кумрун Вафа вырвались из этого тупика. Смешав фундаментальные ингредиенты теории струн (с некоторыми из них мы встретимся в главе 5), они построили математическую модель беспорядка чёрной дыры, достаточно простую и понятную, чтобы извлечь из неё численное значение энтропии. Полученный результат в точности совпал с ответом Бекенштейна и Хокинга. Хотя осталось много открытых вопросов (например, точная идентификация составляющих чёрной дыры), эта работа стала первым надёжным квантово-механическим анализом беспорядка чёрной дыры.[26]
- Предыдущая
- 30/111
- Следующая