Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Скрытая реальность. Параллельные миры и глубинные законы космоса - Грин Брайан - Страница 25


25
Изменить размер шрифта:

Физики выяснили, что проблема коренится в дрожании и флуктуациях из-за квантовой неопределённости. Математические методы квантовой теории поля были разработаны для анализа флуктуаций сильных, слабых и электромагнитных полей, но, при их применении к гравитационному полю — полю, которое определяет кривизну пространства-времени, — оказалось, что они бесполезны. Возникли разные математические противоречия, такие как бесконечные вероятности.

Чтобы понять, почему так происходит, представьте, что вы владелец старого дома в Сан-Франциско. Если кто-то из ваших жильцов устраивает слишком бурные вечеринки, вам, наверное, придётся поднапрячься, чтобы привести жильцов в чувство, но вы точно можете не беспокоиться, что пирушка нарушит устойчивость самого здания. Однако, если начнётся землетрясение, вы столкнётесь с более серьёзной проблемой. Флуктуации трёх негравитационных полей — полей, что населяют здание пространства-времени, — подобны неутомимым участникам вечеринок. Целое поколение физиков боролось с квантовыми флуктуациями, и к началу 1970-х годов были развиты математические методы, адекватно описывающие квантовые свойства негравитационных полей. Однако флуктуации гравитационного поля качественно другие. Они больше похожи на землетрясение. Поскольку гравитационное поле вплетено в саму ткань пространства-времени, квантовые флуктуации сотрясают всю его структуру вдоль и поперёк. Математические методы, используемые для анализа таких всеобъемлющих квантовых флуктуаций, перестают работать.{28}

В течение многих лет физики смотрели сквозь пальцы на эту проблему, потому что она возникает только при весьма экстремальных условиях. Гравитация вступает в игру, когда объекты очень массивны, а квантовая механика — когда их размер очень мал. Редко бывает, чтобы предмет был одновременно и массивный, и малым, так что для его описания необходимо привлекать как квантовую механику, так и общую теорию относительности. Однако подобные ситуации возникают. Когда гравитация и квантовая механика применяются для описания или Большого взрыва или чёрных дыр, то есть когда действительно огромная масса вещества сжимается до небольших размеров, математические методы перестают работать в самый критический момент анализа, оставляя без ответа вопросы, касающиеся того, как Вселенная родилась и как она, возможно, умрёт в центре чёрной дыры.

Более того — и это действительно впечатляюще, — отвлекаясь от озвученных примеров чёрных дыр и Большого взрыва, можно вычислить, насколько массивным и малым должна быть физическая система, для того чтобы и гравитация, и квантовая механика играли существенную роль. Ответ такой — масса, примерно в 109 раз превышающая массу протона, так называемая масса Планка, сжатая до фантастически малого объёма примерно 10−99 кубического сантиметра (грубо говоря, это сфера с радиусом 10−33 сантиметра с так называемой планковской длиной, как показано на рис. 4.1).{29} Таким образом, расстояние, на котором квантовая гравитация вступает в права, в миллион миллиардов раз меньшее расстояния, достижимого на самых мощных в мире ускорителях. Такая огромная неисследованная территория легко может быть населена новыми полями и их частицами — и кто знает, чем ещё. В целях объединения гравитации и квантовой механики потребуется совершить множество переходов, сталкиваясь с известным и неизвестным на всей этой гигантской территории, которая по большей части остаётся экспериментально недоступной. Такая задача весьма амбициозна и многие учёные были убеждены, что она нерешаема.

Рис. 4.1. Планковская длина, на которой сходятся гравитация и квантовая механика, примерно в 100 миллиардов миллиардов раз меньше, чем любая область, когда-либо исследованная экспериментально. На схеме каждое большое деление соответствует уменьшению размера в 1000 раз; благодаря этому данная схема целиком умещается на одной странице, что, однако, визуально снижает масштабность этого огромного диапазона. Для лучшего понимания укажем, что если увеличить атом до размеров наблюдаемой Вселенной, то планковская длина будет равна размерам обычного дерева

Поэтому вы можете представить то удивление и недоверие, когда в середине 1980-х годов в физическом сообществе поползли слухи, что в направлении объединения произошёл серьёзный теоретический прорыв в рамках подхода, названного теорией струн.

Теория струн

Хотя теория струн имеет репутацию сложной теории, её основная идея очень проста. Мы видели, что стандартная точка зрения, до теории струн, состояла в том, что фундаментальные составляющие являются точечными частицами — точками без внутренней структуры, — которые описываются уравнениями квантовой теории поля. С каждым типом частиц связан свой тип поля. Теория струн бросает вызов такому представлению, утверждая, что частицы не являются точечными. Вместо этого в теории струн предлагается рассматривать их как крошечные, струноподобные вибрирующие нити, как на рис. 4.2. Приглядитесь поближе к любой частице, которая раньше считалась элементарной, и вы увидите, как того требует теория, крохотную вибрирующую струнку. Загляните поглубже в электрон и вы обнаружите струну, загляните поглубже в кварк и вы опять обнаружите струну.

Рис. 4.2. Согласно струнному объяснению устройства природы, на планковских расстояниях фундаментальные составляющие материи имеют вид струноподобных нитей. Однако из-за ограниченности разрешающей способности нашего оборудования мы видим эти струны как точки

При более детальном рассмотрении, говорит теория, вы увидите, что струны в частицах разного типа неразличимы — лейтмотив всей теории струн, — но вибрируют они по-разному. Электрон менее массивен чем кварк, и согласно теории струн это означает, что струна электрона вибрирует менее энергично, чем струна кварка (очередное проявление эквивалентности энергии и массы, воплощённое в уравнении E = mc2). Электрон также обладает электрическим зарядом, величина которого превышает величину заряда кварка, и эта разница объясняется другими, более тонкими, различиями в струнном вибрационном поведении каждого из них. Различные свойства частиц объясняются разным вибрационным поведением нитей в теории струн, подобно тому как разные вибрации гитарных струн порождают звучание разных музыкальных нот.

На самой деле, теория побуждает нас думать, что вибрирующие струны не просто порождают свойства частицы-хозяина, а что они и есть сама частица. По причине бесконечно малого размера струны, порядка планковской длины — 10−33 сантиметра, даже самые точные современные эксперименты не могут подтвердить или опровергнуть протяжённую структуру струны. Большой адронный коллайдер, на котором частицы сталкиваются друг с другом при энергиях, превышающих в 10 триллионов раз энергию покоящегося протона, может добраться до расстояний примерно 10−19 сантиметра; это миллионная от миллиардной доли толщины волоса, но всё же оно слишком велико, на много порядков больше планковских расстояний. Поэтому струны выглядят как точки, даже если их изучать на самых мощных в мире ускорителях частиц, подобно тому как Земля выглядит как точка, если на неё смотреть с Плутона. Тем не менее, согласно теории струн, частицы являются струнами.

В этом, в двух словах, и заключается теория струн.

Струны, точки и квантовая гравитация

У теории струн есть много других существенных свойств, и её развитие значительно расширило то схематическое описание, которое я изложил. В этой главе (а также в главах 5, 6 и 9) мы познакомимся с некоторыми наиболее важными достижениями, но сейчас я хотел бы подчеркнуть три особо важных момента.