Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Скрытая реальность. Параллельные миры и глубинные законы космоса - Грин Брайан - Страница 16


16
Изменить размер шрифта:

Гравитационное отталкивание?

Это поставило бы Ньютона в тупик. Для него гравитация была исключительно силой притяжения. Однако нас это не должно смущать: мы и раньше сталкивались с этим странным пунктом в договоре между общей теорией относительности и гравитацией. Помните, как в предыдущей главе мы обсуждали космологическую постоянную Эйнштейна? Я говорил, что при наполнении пространства однородной энергией космологическая постоянная приводит к гравитационному отталкиванию. Однако тогда я не стал объяснять, почему так происходит. Теперь я могу это сделать. Космологическая постоянная не только наполняет пространство однородной энергией, величина которой определяется значением самой константы (число в третьей строчке гравитационной декларации), но также приводит к появлению в пространстве однородного отрицательного давления (скоро увидим, почему). И когда, как в примерах выше, дело доходит до гравитации, отрицательное давление играет роль, противоположную положительной массе и положительному давлению. Так возникает гравитационное отталкивание.[11]

Гравитационное отталкивание возникло в работах Эйнштейна лишь однажды, и то с ошибочной целью. Он предлагал получить статичную вселенную путём тонкой подстройки значения отрицательного давления во всём пространстве, так чтобы возникшее гравитационное отталкивание точно компенсировало гравитационное притяжение обычного вещества во вселенной. Как мы видели, впоследствии он отказался от этого предложения. Шестьдесят лет спустя создатели инфляционной теории предложили вариант гравитационного отталкивания, который отличался от эйнштейновской версии, как финал восьмой симфонии Малера от звука камертона. Вместо умеренного и равномерного расширения, которое может стабилизировать вселенную, инфляционная теория порождает гигантскую волну гравитационного отталкивания, невероятно короткую и ураганно-мощную. До этого события, однако, есть достаточно времени, чтобы у разных областей пространства выровнялась температура, после чего они разносятся на волне на гигантские расстояния и занимают наблюдаемое сейчас положение на небе.

В этом месте Ньютон снова неодобрительно посмотрел бы на вас. Будучи скептиком, он нашёл бы другой пробел в вашем объяснении. Разобравшись в тонкостях общей теории относительности, почитав один из стандартных учебников, он согласился бы с тем странным фактом, что гравитация в принципе может быть отталкивающей. Но, спросил бы он, к чему весь этот разговор об отрицательном давлении, заполняющем пространство? Одно дело — использовать натяжение растянутой резинки в качестве иллюстрации отрицательного давления. Но совсем другое дело — доказывать, что миллиарды лет назад, примерно в момент Большого взрыва, пространство было мгновенно заполнено огромным и однородным отрицательным давлением. Что за процесс может обеспечить подобное мгновенное и при этом повсеместное распространение отрицательного давления?

В ответе на этот вопрос проявилось гениальное прозрение первооткрывателей инфляции. Было показано, что отрицательное давление, необходимое для создания антигравитационной волны, естественным образом возникает из нового механизма, составляющие которого известны как квантовые поля. Для нашего повествования детали этого явления очень важны, потому что способ инфляционного расширения играет ключевую роль в сценарии параллельных миров, к которому оно приводит.

Квантовые поля

Во времена Ньютона цель физики состояла в изучении движения обычных предметов — камней, пушечных ядер, планет — и полученные им уравнения прекрасно служили этой цели. Законы движения Ньютона — это математический способ выразить движение реальных тел, если их толкнуть, потянуть или бросить. В течение более чем столетия данный подход давал прекрасные результаты. Однако в начале XIX века английский учёный Майкл Фарадей ввёл в обиход трудное для понимания, но эффективное понятие поля.

Возьмите мощный магнит и разместите его в сантиметре от канцелярской скрепки. Вы знаете, что произойдёт. Скрепка подпрыгнет вверх и прилипнет к поверхности магнита. Этот опыт настолько распространён, настолько хорошо известен, что легко проглядеть, насколько он невероятен. Магнит заставляет двигаться канцелярскую скрепку, даже не прикоснувшись к ней. Как такое возможно? Каким образом передаётся влияние магнита на скрепку без какого-либо контакта? Эти и другие вопросы привели Фарадея к постулату, что хотя магнит в буквальном смысле слова не касается скрепки, он производит нечто, что касается. Это нечто было названо Фарадеем магнитным полем.

Поля, порождённые магнитом, нельзя увидеть, нельзя услышать, ни одно из наших чувств восприятия не настроено на них. Однако это всего лишь физиологические ограничения. Так же как от пламени идёт тепло, так и от магнита исходит магнитное поле. Находясь за пределами физической границы твёрдого магнита, магнитное поле является некоей «дымкой» или «эссенцией», которая наполняет пространство и действует по распоряжению магнита.

Кроме магнитных есть и другие поля. Заряженные частицы порождают другой тип — электрические поля, подобные тем, из-за которых можно получить удар током, прикоснувшись к металлической ручке двери комнаты, устланной шерстяными коврами. Эксперименты Фарадея совершенно неожиданно показали, что электрические и магнитные поля внутренне связаны: было обнаружено, что изменение электрического поля порождает магнитное и наоборот. В середине XIX века Джеймс Клерк Максвелл подвёл мощный математический фундамент под эти эксперименты, описав электрические и магнитные поля в виде чисел, приписанных каждой точке пространства, причём значения этих чисел характеризуют способность поля оказывать влияние в данной точке. В точках пространства, где численные значения магнитных полей велики, например в томографической камере, металлические предметы будут испытывать сильное отталкивание или притяжение. В точках пространства, где велики численные значения электрических полей, например внутри грозового облака, могут происходить сильные электрические разряды, такие как молнии.

Максвелл вывел уравнения, впоследствии названные в его честь, которые описывают изменение силы электрических и магнитных полей в пространстве от точки к точке и от одного момента времени к другому. Именно эти уравнения описывают море электрических и магнитных полей — так называемые электромагнитные волны, окружающие нас со всех сторон. Включите сотовый телефон, радио или беспроводной компьютер, и получаемые сигналы будут лишь крохотной крупицей из электромагнитного потока, молчаливо обтекающего нас каждую секунду. А более всего потрясает то, что и видимый свет, согласно уравнениям Максвелла, является электромагнитной волной, такой, которую научились воспринимать в процессе эволюции наши глаза.

Во второй половине XX столетия физики присоединили концепцию поля к быстро развивающемуся пониманию микромира, основанному на квантовой механике. В итоге квантовая теория поля стала математическим аппаратом для создания самых точных теорий материи и сил в природе. С её помощью физики установили, что помимо электрических и магнитных полей существует целый набор других полей, таких как сильные и слабые ядерные поля, электронные, кварковые, и нейтринные поля. Поле, которое является теоретическим фундаментом инфляционной космологии[12], называется полем инфлатона. Однако на настоящий момент его статус остаётся совершенно гипотетическим.

Квантовые поля и инфляция

Поля обладают энергией. Интуитивно мы знакомы с этим, потому что поля участвуют в процессах, требующих затрат энергии, как, например, вызванное полями движение предметов (как в случае с канцелярской скрепкой). В количественном отношении уравнения квантовой теории поля показывают, как при заданном численном значении поля в заданной области пространства вычислить содержащееся в нём количество энергии. Как правило, чем больше значение поля, тем больше количество энергии. Значение поля может изменяться от точки к точке, но если поле является постоянным, то есть везде имеет одинаковое значение, энергия также будет одинаковой в каждой точке пространства. Важное наблюдение Гута состояло в том, что такие однородные конфигурации поля наполняют пространство не только однородной энергией, но также и однородным отрицательным давлением. Таким способом он обнаружил физический механизм возникновения гравитационного отталкивания.