Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Вначале была аксиома. Гильберт. Основания математики - Коллектив авторов - Страница 24
Французский математик Анри Пуанкаре был первым, кто указал на то, что источник парадоксов, атакующих логику, заключается в цикличности, в виде автореференции или принадлежности самому себе. Парадоксы держались на использовании непредикативных определений — тех, в которых определяемое входит в состав определения. Позже Рассел назвал это принципом порочного круга. Неудивительно, что нарушение этого принципа ведет к парадоксам, антиномиям и противоречиям, многие из которых признаются даже вне формальных языков, в естественных языках. В качестве примера служит хорошо известный парадокс лжеца, приписываемый Эпимениду Критскому (в своих письмах о нем упоминает даже святой Павел). В одном из стихотворений Эпименид порицает критян, называя их лжецами. Но поскольку он сам критянин, его утверждение, относящееся к самому себе, преобразуется в «я лгу». В этом случае то, что он говорит, не может быть правдой, значит, критяне не лгут. Но если они не лгут, то и Эпименид тоже, поэтому получается, что критяне лгут, и так далее.
Математическая логика, как ее стали называть вслед за Пеано, создавала одни только неприятности. И Пуанкаре, который считал ее бесполезной, смеялся: «Она уже не стерильна, она порождает противоречия». Несмотря ни на что логистическая программа, составленная Фреге, получила развитие благодаря бесцеремонности Бертрана Рассела и Альфреда Норта Уайтхеда (1861-1947).
В 1900 году на международном конгрессе по философии, проходившем в Париже, Рассел столкнулся с символической реформой Пеано. В 1889 году Пеано представил свои «Принципы арифметики», содержащие знаменитые пять аксиом (включая принцип индукции) для натуральных чисел, используя новую символику, которую разработал сам. В сообществе логиков и математиков одномерная символика Пеано была принята лучше, чем двумерная символика Фреге (за исключением его учеников, которые взбунтовались и не успокоились, даже когда Пеано предложил поставить всем зачет). В 1902 году, верный логицизму Фреге и символизму Пеано, Рассел опубликовал «Принципы математики». Но медовый месяц логики был коротким, потому что незадолго до публикации он открыл парадокс, который сегодня носит его имя. До 1910 года Рассел работал с Уайтхедом, и оба стремились справиться с противоречиями, которые вскрыл парадокс. В книге Principia mathematica (1911-1913) они глубже, чем кто-либо на сегодняшний день, погрузились в основания математики. Эта блестящая работа стала, говоря словами Гильберта, «коронацией аксиоматизации».
БЕСКОНЕЧНЫЙ ОТЕЛЬ ГИЛЬБЕРТА
Гёттингенский профессор придумал метафору, которая просто и ясно объясняет некоторые парадоксы, связанные с бесконечностью и открытые математиками одновременно с логическими парадоксами. Несмотря на то что это кажется невероятным, в отеле с бесконечным числом номеров всегда есть место для новых гостей, хотя все номера заняты. Действительно, если мы переселим гостя из первого номера во второй, того, что во втором, — в четвертый, того, что в третьем, — в шестой, и так далее, мы освободим все нечетные номера. Поскольку существует бесконечное количество нечетных чисел, есть место не только для нового постояльца, который подойдет к гостиничной стойке, но также и для бесконечного числа постояльцев. Из этой же самой ситуации мы могли бы сделать больше удивительных выводов...
— В отеле заняты все номера, и один гость уезжает. Тогда число постояльцев остается тем же самым (бесконечным).
— Если уезжают все гости, занимающие четные номера, то число постояльцев остается тем же самым (бесконечным).
— Однако если из отеля уедут все гости, занимающие номера, например с пятого и далее, то число постояльцев не будет тем же самым (в этот раз их число будет конечным).
Все это наводит нас на мысль о гибкости математической бесконечности и об осторожности, с которой нужно высказываться о ней.
Чтобы избежать парадоксов, Рассел и Уайтхед сформировали теорию типов, в которой для того, чтобы X ϵ Y было правильно составленной формулой, требуется, чтобы тип значения Y был непосредственно выше типа значений X. Таким образом, пропозиция «класс всех стульев не является стулом» — не истинная и не ложная, а попросту лишена смысла, поскольку стульями могут быть только объекты, а не классы объектов. Другими словами, ошибочно распространять свойство одного типа на другой. При применении этой хитроумной теории авторы могли утверждать, что формулировки, ведущие к парадоксу Рассела, перестают иметь смысл: R ϵ R теперь являлось неправильно составленной формулой, поскольку в ней было задействовано не больше одного типа.
Математика [...] обладает не только истиной, но и высшей красотой, холодной и суровой, подобной скульптуре.
Бертран Рассел
В Principia после устранения парадоксов Уайтхед и Рассел перешли к выведению математики из логики, поскольку в их понимании граница здесь невозможна. С технической точки зрения проект логификации математических теорем натолкнулся на многочисленные трудности. Ученым потребовалось более 379 страниц (!), чтобы доказать, что 1 + 1 = 2. Настоящее безумие. Кроме того, они были вынуждены расширить логику до крайне обобщенной теории отношений, в которую включили такие малоудовлетворительные аксиомы, созданные для данного случая, как редуктивность и бесконечность. Неуклюжая аксиома редуктивности работала как нечто вроде deus ex machina, — авторы прагматично обосновывали ее тем, чтобы работать с антиномиями и логифицировать математику: когда формула оказывается слишком сложной, предполагалось, что ее всегда можно упростить до другой, более низкого уровня.
Аксиома бесконечности была нужна для определения натуральных чисел в комплексе. Следуя за Фреге, они определили 2 как класс всех пар, 3 — как класс всех троек... Но они были вынуждены ввести аксиому (в ней утверждалось, что для любого числа существует другое, больше него), обоснование которой не могло строиться ни на одном из классов логической или математической догадки (что было бы нарушением принципа «логика или математика, основывающаяся на самой себе»), а лишь на характерной структуре мира, которому приписывалось то, что он должен включать в себя бесконечное число объектов. Если бы в мире существовало не бесконечное число вещей, а только максимальное число вещей n, Рассел и Уайтхед не смогли бы определить число n + 1, поскольку класс всех скоплений (n + 1) был бы пустым, так как не было бы n + 1 объектов в мире. Герман Вейль, ученик Гильберта, решительно отверг это: «Принципы...» испытывали веру, как Отцы Церкви.
Баланс заключался в том, что в лучшем случае Расселу и Уайтхеду удалось свести математику к виду мегалогики, раю для логиков. Логистический тезис является либо ложным (если логика не включает в себя теорию классов — то, что называется теорией множеств), либо тривиальным (если включает ее). На сегодняшний день некоторые логики пытаются возродить этот тезис, чтобы перевести математику в подходящую логику второго порядка (поскольку логики первого порядка оказалось недостаточно). Но, как говорили многие математики, логика второго порядка — это всего лишь замаскированная математика множеств. Так как в логике второго порядка допустимо говорить не только об объектах, но и о свойствах, можно определить множество понятий, типичных для теории множеств. Количественно оценивать свойства — в конечном итоге все равно что количественно оценивать множества, множество объектов, выполняющих свойство. Следовательно, речь идет о логике, лежащей в основе собственно теории множеств. Ее наибольшая выразительная сила, позволяющая охарактеризовать бесконечность или формализовать принцип индукции в одной-единственной аксиоме (вместо схемы аксиом, заключающей в себе бесконечности), — это обоюдоострое оружие. Мы находимся там же, где и были: если логика включает в себя теорию множеств, то логистический тезис истинный, но тривиальный; если логика его не включает, он радикально ложный.
- Предыдущая
- 24/35
- Следующая