Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Камень, ножницы, теорема. Фон Нейман. Теория игр - Коллектив авторов - Страница 13
Эта платежная матрица говорит нам, что если игрок А выберет стратегию 2, а игрок В — стратегию 1, то в результате выигрыш первого составит 1, а проигрыш второго — 6. Если же игрок А выберет стратегию 1, а В — 2, то проигрыш первого составит 3, а выигрыш второго — 5. Ниже приведен еще один, более простой способ изображения платежной матрицы с такой же расшифровкой.
В1
В2
А1
10,2
-3,5
А2
1-6
4,8
При игре с нулевой суммой достаточно вставить одно число в каждую ячейку, так как выигрыш одного игрока будет равен потере другого.
Джон фон Нейман за чаепитием с выпускниками в Институте перспективных исследований Принстона (IAS) в ноябре 1947 года.
Бюст фон Неймана в Будапеште.
В 1944 году Оскар Моргенштерн (на фото) и Джон фон Нейман выпустили совместную работу Theory of Games and Economic Behavior («Теория игр и экономическое поведение·).
В1
В2
А1
9
-3
А2
-2
14
Эта матрица показывает, что если игрок А выберет первую стратегию, а игрок В — вторую, то первый потеряет 3, а второй выиграет 3, и так далее для остальных ячеек.
Этот способ представления игры для двух человек с нулевой суммой в виде двойной таблицы фон Нейман назвал сведением к нормальной форме игры.
Разумеется, таблицы, приведенные выше, могут относиться только к очень простым играм, но это не означает, что их нельзя применить и к таким сложным, как шахматы, хотя в этом случае таблица была бы огромной. Но важны не размеры таблицы, а то, что игры такого типа можно привести к нормальной форме.
Предшественником фон Неймана в моделировании игр был французский математик Эмиль Борель (1871-1956), опубликовавший с 1921 по 1927 год серию работ по теории игр, целью которых было установить выигрышные стратегии вне зависимости от фактора удачи или психологического состояния игроков в момент принятия решений. Несмотря на то что их работы в чем-то схожи, фон Нейман всегда утверждал, что проводил свои исследования совершенно независимо от Бореля. Можно с точностью сказать, что математические результаты фон Неймана имеют более общий характер и отвечают на такие ключевые вопросы, которые никогда даже не поднимались в работах Бореля. Тем не менее некоторые ученые отстаивают важность его вклада и, говоря об этой схеме, называют ее теорией Бореля — Неймана.
ПЕРВАЯ ТЕОРЕМА О МИНИМАКСЕ
Для того чтобы установить выигрышную стратегию в игре, игроки должны отвечать двум требованиям.
1. Они оба должны быть рациональными.
2. Они оба должны выбирать свои стратегии, ориентируясь исключительно на личную выгоду.
Теперь представим, что игроки А и В участвуют в игре со следующей платежной матрицей.
В1
В2
B3
А1
-5
0
-2
А2
1
-3
-2
A3
3
8
-1
Она содержит три возможных выбора для каждого игрока. Предположим, что числа обозначают выигрыши или проигрыши в евро. Следовательно, речь идет об игре с нулевой суммой в ее нормальной форме. Проанализируем возможные стратегии игроков. Допустим, В выбирает первую стратегию. В таком случае лучшим вариантом для А будет третья стратегия: с ней он заработает 3 евро, тогда как с первой потеряет 5, а со второй выиграет всего 1. Если же В выберет вторую стратегию, то А тоже будет лучше следовать третьему варианту, так как он позволяет заработать больше всего. Наконец, если В выберет третью стратегию, то А проиграет в любом случае, но его проигрыш составит только 1 евро. Следовательно, для А лучшей стратегией, безусловно, будет третья, вне зависимости от выбора В.
У игрока В немного другая ситуация. Если А выберет первую стратегию, наилучшим вариантом будет В1. В случае А2, разумеется, следует выбрать В2, а в случае A3 В должен выбрать третью стратегию, так как с ней он потеряет меньше всего. При этом В не имеет ни малейшего понятия о том, как поступит А, и тем не менее он должен сделать свой выбор. Именно в этот момент строится следующее предположение: «А — рациональный игрок, и лучший вариант для него — A3; в этом случае ВЗ будет для меня выгоднее всего, и значит, я последую этой стратегии». Игрок В знает, что в противном случае он проиграет, и пытается свести этот риск к минимуму.
Исследуя эту схему, фон Нейман сделал следующее замечание: на каждой строке всегда есть число меньше остальных двух. Он назвал его минимальным значением. Например, в предыдущей таблице в первой строке стоят числа -5, 0, -2. Самое маленькое из них -5. Таким же образом, минимальное значение для второй строки -3, для третьей —1. Фон Нейман взял самое большое из этих трех чисел, —1 (из всех трех вариантов оно является минимальным проигрышем), и назвал его максимином.
Затем он проделал то же самое для столбцов, но наоборот. Найдем самое большое, то есть максимальное, число в каждом столбце. В первом это будет 3, во втором 8, в третьем -1. Теперь определим самое маленькое из них, минимакс, которым в этом случае будет -1. Таким образом, в этой игре максимин и минимакс совпали в -1. И не случайно, ведь именно это и утверждается в теореме фон Неймана: «В большинстве игр с двумя участниками и нулевой суммой максимин всех строк всегда совпадает с минимаксом столбцов», и оно будет значением игры при оптимальной стратегии для обоих игроков.
Этот результат, известный как первая теорема о минимаксе, был опубликован в статье 1928 года Ж теории стратегических игр». В ней фон Нейман заложил общие основы будущей теории игр. Важно подчеркнуть еще раз: для того чтобы удовлетворить условиям теоремы фон Неймана, оба игрока должны быть рациональными, заботиться исключительно о собственных интересах и очень тщательно анализировать свои возможные стратегии. Эти критерии выполняются не во всех играх. Например, если один из игроков — природа, то в силу вступают произвольные факторы, и этот противник, разумеется, не осуществляет никакого анализа.
БИТВА В МОРЕ БИСМАРКА
Теория игр имела и продолжает иметь тесную связь с так называемыми военными играми. Одним из первых случаев, когда она была применена на войне, стало сражение в море Бисмарка, состоявшееся 23 декабря 1942 года, в котором столкнулись стратегии американского генерала Джорджа Кенни и контр-адмирала Масатоми Кимуры. В конце боя были потоплены все транспортные суда и половина японских кораблей. Благодаря критерию минимакса командование США выбрало оптимальную стратегию и установило новую доктрину для разведывательных полетов. Японский флот должен был выйти из порта Рабаул на северо-востоке острова Новая Британия и направиться в порт Лае для подкрепления. У контр-адмирала Масатоми Кимуры было два варианта: выбрать северный маршрут, пролегавший по морю Бисмарка, где обычно были очень плохие климатические условия, или южный, с более благоприятными. Генерал Кенни должен был сконцентрировать все самолеты-разведчики на одном из этих двух маршрутов, учитывая при этом количество дней, которое ему потребовалось на бомбардировку, как только были бы замечены японские корабли. Применив к платежной матрице критерий минимакса, авторы стратегии выяснили, что при выборе северного маршрута предполагаемое количество дней для бомбардировки в любом случае равнялось бы 2, поэтому был сделан выбор в пользу следующей стратегии.
- Предыдущая
- 13/30
- Следующая