Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Математический аппарат инженера - Сигорский Виталий Петрович - Страница 7
Определяющее свойство. Другой способ задания множества состоит в описании элементов определяющим свойством Р(х) (формой от х), общим для всех элементов. Обычно Р(х) — это высказывание, в котором что-то утверждается об х, или некоторая функция
- 23 -
переменной х. Если при замене х на а высказывание Р(а) становится истинным или функция в заданной области определения удовлетворяется, то а есть элемент данного множества. Множество, заданное с помощью формы Р(х), обозначается как Х={х | Р(х)}, или Х={х :Р(х)}, причем а {х | Р(х)}, если Р(а) истинно. Например {х | х2 = 2} - множество чисел, квадрат которых равен двум, {х | х есть животное с хоботом} - множество слонов.
Обычно уже в самом определении конкретного множества явно или неявно ограничивается совокупность допустимых объектов. Так, множество слонов следует искать среди млекопитающих, а не среди рыб и тем более не среди планет. Если речь идет о множестве чисел, делящихся на 3, то ясно, что оно является подмножеством целых чисел. Удобно совокупность допустимых объектов зафиксировать явным образом и считать, что рассматриваемые множества являются подмножествами этой совокупности. Ее называют основным множеством (универсумом) и обычно обозначают через U. Так, универсумом арифметики служат числа, зоологии - мир животных, лингвистики - слова и т.п.
Если множество выделяется из множества A с помощью формы Р(х), то запись {х | х ∈ А, Р(х)} часто упрощается: {х ∈ А | Р(х)}. Запись {f(х) | Р(х)} означает множество всех таких у=f(х), для которых имеется х, обладающий свойством Р(х). Например, {х2 | х - простое число} означает множество квадратов простых чисел.
7. Операции над множествами. Множества можно определять также при помощи операций над некоторыми другими множествами. Пусть имеются два множества A и B.
Объединение (сумма) А ∪ В есть множество всех элементов, принадлежащих A или В. Например, {1, 2, 3} ∪ (2, 3, 4} = {1, 2, 3, 4}.
Пересечение (произведение) А ∩ В есть множество всех элементов, принадлежащих одновременно как A, так и В. Например, {1, 2, 3} ∩ {2, 3, 4} = {2, 3}. Множества, не имеющие общих элементов (A ∩ В = ∅), называют непересекающимися (расчлененными).
Разность А \ В (или A - В) есть множество, состоящее из всех элементов A, не входящих в В, например, {1, 2, 3} \ {2, 3, 4} = {1}. Ее можно рассматривать как относительное дополнение В до A. Если A ⊂ U, то множество U \ A называется абсолютным дополнением (или просто дополнением) множества A и обозначается через A̅. Оно содержит все элементы универсума U, кроме элементов множества A. Дополнение A определяется отрицанием свойства Р(х), с помощью которого определяется A. Очевидно, А \ В = A ∩ В̅.
- 24 -
Дизъюнктивная сумма (симметрическая разность) А + В (или A ⊕ В) есть множество всех элементов, принадлежащих или A, или В (но не обоим вместе). Например, {1, 2, 3} + {2, 3, 4} = {1, 4}. Дизъюнктивная сумма получается объединением элементов множеств за исключением тех, которые встречаются дважды.
8. Круги Эйлера. Для наглядного изображения соотношений между подмножествами какого-либо универсума и используют круги Эйлера (рис. 2). Обычно универсум представляется множеством точек прямоугольника, а его подмножества изображаются в виде кругов или других простых областей внутри этого прямоугольника.
Рис. 2. Круги Эйлера для основных операций над множествами.
Множества, получаемые в результате операций над множествами A и В, изображены на рис. 2 заштрихованными областями. Непересекающиеся множества
изображаются неперекрывающимися областями, а включение множества соответствует области, целиком располагающейся внутри другой (рис. 3). Дополнение множества A (до U), т. е. множество A̅ изображается той частью прямоугольника, которая лежит за пределами круга, изображающего A.
9. Отношения. В начале этого параграфа речь шла о том, что элементы множества могут находиться в некоторых отношениях между собой или с элементами других множеств.
Рис. 3. Круги Эйлера для непересекающихся множеств, отношения включения и дополнения.
В самом общем смысле отношение означает какую-либо связь между предметами или понятиями. Отношения между парами объектов называют бинарными (двуместными). Выше же были рассмотрены два таких отношения - принадлежность (а ∈ A) и включение A ⊂ B. Первое из них определяет связь между множеством и его элементами, а второе - между двумя множествами. Примерами бинарных отношений являются равенство (=), неравенства (< или ⩽ ), а также такие выражения как «быть братом», «делиться (на какое-то число)», «входить в состав (чего-либо)» и т. п.
- 25 -
Для любого бинарного отношения можно записать соответствующее ему соотношение (для отношения неравенства соотношением будет х < у, для отношения «быть братом» соотношение запишется как «х брат у»). В общем виде соотношение можно записать как хАу, где А - отношение, устанавливающее связь между элементом х из множества Х (х ∈ X) и элементом y из множества Y (y ∈ Y). Ясно, что отношение полностью определяется множеством всех пар элементов (х, у), для которых оно имеет место. Поэтому любое бинарное отношение А можно рассматривать как множество упорядоченных пар (х, у).
Отношения могут обладать некоторыми общими свойствами (например, отношение включения и отношение равенства транзитивны). Определяя эти свойства и комбинируя их, можно выделить важные типы отношений, изучение которых в общем виде заменяет рассмотрение огромного множества частных отношений.
10. Функции как отношения. Функция f, ставящая каждому числу х (аргументу) в соответствие определенное число (значение функции) у=f(х), также является бинарным отношением.
Обобщая это понятие, можно считать функцией такое бинарное отношение f, которое каждому элементу х из множества Х ставит в соответствие один и только один элемент из множества Y, т. е. хfу. При этом считают, что элементами множеств Х и Y могут быть объекты любой природы, а не только числа.
Функцией в таком общем понимании будет, например, соответствие между деталями какого-либо механизма и их массой (каждой детали соответствует ее масса), между человеком и его фамилией и т. п. В то же время такие отношения как неравенство (<) или «быть братом» функциями не являются, так как для каждого числа можно указать бесконечные множества превышающих его чисел, а человек может иметь несколько братьев или совсем их не иметь.
Обобщение понятия функции явилось одним из отправных моментов нового важного раздела современной математики - функционального анализа. Это понятие имеет огромное прикладное значение, так как позволяет рассматривать функциональные отношения между объектами любой природы.
Задачи и упражнения
1. Какие из приведенных ниже соотношений неверны и почему?
а) x ∈ {2, a, x}; б) 3 ∈ {1, {2, 3}, 4}; в) x ∈ {1, sinx}; г) {x, y} ∈ {a, {x, y}, b}.
2. Равны ли между собой множества А и В (если нет, то почему)?
а) A = {2, 5, 4}, B = {5, 4, 2};
б) A = {1, 2, 4, 2}, B = {1, 2, 4};
- Предыдущая
- 7/32
- Следующая