Вы читаете книгу
Бесчисленное поддается подсчету. Кантор. Бесконечность в математике
Коллектив авторов
Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Бесчисленное поддается подсчету. Кантор. Бесконечность в математике - Коллектив авторов - Страница 2
Однако Кантора это не остановило: он был убежден в вероятности и даже необходимости создания математической теории бесконечности. Благодаря своей непреклонной логике он развил одну из самых удивительных на сегодняшний день теорий и использовал новый подход к математике — более свободный и дающий множество возможностей. Одной из самых оригинальных концепций Кантора стали ординалы — числа, позволяющие вести исчисление за пределами бесконечности. После бесконечного ряда чисел 0, 1,2, 3, 4, 5,..., по утверждению Кантора, следует трансфинитное (то есть ординальное) число ω. Затем идут ω + 1, ω + 2, ω + 3,..., а после этого ряда ω + ω + 1, ω + ω + 2,... и так далее.
Но правильно ли «изобретать» эти числа таким произвольным способом? Что обозначает число ω? До XIX века все понятия, которыми оперировали математики, были тесно связаны с более или менее конкретными задачами, с ситуациями, представляемыми или связанными с реальностью. Например, описание физических явлений, изучение свойств геометрических объектов или конечных рядов чисел (1, 2, 3, 4,...). Так, 0, обозначающий «количество, которого нет», не сразу был признан полноценным числом, на это ушло несколько столетий. То же самое и с отрицательными числами: еще в XVIII веке Лейбниц не считал их существующими. В целом числа признавались, только если они так или иначе обозначали некое количество, которое можно зрительно представить.
Число ω обозначает актуально бесконечное количество; ни один предмет, ни одно физическое явление не поможет представить его, оно есть только в нашем сознании. Тем не менее Кантор со своими строго логическими рассуждениями «заставил» нас принять его за существующее, для чего ученому пришлось изменить подход к математике. Сегодня к математическим концепциям больше не предъявляются требования соответствовать реальности или представлять конкретное явление. Они только должны быть логически последовательными. За исключением этого ограничения, математики абсолютно вольны создавать, исследовать, анализировать, играть с понятиями, идеями и теориями.
После Кантора сущность математики изменилась, и он с большим удовлетворением принял бы нынешнее положение вещей — когда ученые могут свободно выдвигать теории и концепции. Ведь он утверждал, что чистая математика должна называться свободной. Говоря его словами, «сущность математики — в ее свободе».
1845 3 марта в Санкт-Петербурге у Георга Вальдемара Кантора и Марии Анны Бойм рождается сын Георг Фердинанд Людвиг Филипп Кантор.
1856 Семья переезжает в Германию.
1862 Георг хочет изучать математику, но отец противится желанию сына, и юноша поступает на инженерный факультет Высшей технической школы в Цюрихе. Несколько месяцев спустя отец все-таки разрешает ему заниматься математикой в том же учебном заведении.
1863 Умирает отец Кантора. Семья переезжает в Берлин, где юный Георг завершает свое математическое образование.
1867 Получает докторскую степень в Берлинском университете.
1869 Кантор поступает на работу в Галльский университет.
1872 Знакомится с Рихардом Дедекиндом. Многие идеи о бесконечности будут впервые высказаны Кантором в письмах Дедекинду.
1874 Кантор женится на Валли Гутман; у них будет шестеро детей. В том же году он публикует статью Ober eine Eigenschaft des Inbegriffes alter reellen algebraischen Zahlen («Об одном свойстве совокупности всех действительных алгебраических чисел»), в которой впервые появляются его идеи о бесконечности, хотя по совету Карла Вейерштрасса он и завуалировал их.
1878 Кантор публикует Ein Beitrag zur Мапnigfaltigkeitslehre (4К учению о многообразиях»), где открыто излагает свои идеи о бесконечности. Леопольд Кронекер использует все свое влияние, чтобы воспрепятствовать изданию статьи.
1883 Выходит в свет работа Grundlagen einer allgemeinen Mannigfaltigkeitslehre (4 Основы общего учения о многообразиях»), апогей математического творчества Кантора.
1884 В мае у Кантора случается приступ депрессии. Он полностью оставляет занятия математикой более чем на пять лет.
1890 Создается Deutsche MathematikerVereinigung (4Немецкое математическое общество»), и Кантор становится его первым президентом.
1892 Кантор публикует работу Ober eine elemental Frage der Mannigfaltigkeitslehre («Об одном элементарном вопросе учения о многообразиях»), в которой представлен его знаменитый диагональный метод.
1895 Выходит в свет первая часть Beitrage zur Begmndung der transfi niten Mengenlehre («К обоснованию учения о трансфинитных множествах»), вторая часть будет опубликована в 1897 году.
1899 16 декабря умирает 13-летний сын Кантора. У ученого начинается душевное расстройство, от которого он так и не оправится до конца жизни.
1918 6 января Кантор умирает в психиатрической лечебнице в Галле.
ГЛАВА 1
Где начинается бесконечность
Есть вопросы, которыми человечество задается с тех самых пор, когда первые мужчины и женщины усаживались у огня и принимались размышлять и изучать то, что их окружало. Существовал ли мир всегда или у него было начало? Он перестанет существовать когда-нибудь? Есть ли предел у неба или оно не имеет преград?
В основе всех этих вопросов лежит одно из самых невероятных и глубоких понятий — бесконечность.
Почти все области математики являются результатом долгих исторических процессов, десятки или сотни лет они развивались благодаря множеству ученых, и трудно, если не невозможно, однозначно указать на одного зачинателя. Так, корни геометрии и алгебры уходят в Древний Египет и Месопотамию, а более «молодые» разделы науки, например методы счисления, выведены в конце XVII века одновременно и независимо друг от друга англичанином Исааком Ньютоном и немцем Готфридом Вильгельмом фон Лейбницем. Правда, они выразили идеи, которые их предшественники изучали веками (мы подробнее рассмотрим это в главе 3).
Однако математическая теория бесконечности (и теория множеств — как мы увидим, в сущности это одно и то же) появилась благодаря таланту и воображению единственного человека, создавшего ее фактически из ничего, — математика русско-немецкого происхождения Георга Кантора.
Можно даже назвать конкретную дату, когда произошел творческий прорыв, приведший Кантора к этой теории. Он писал 5 ноября 1882 года своему другу и коллеге Рихарду Дедекинду:
«[...] после наших недавних встреч в Гарцбурге и Эйзенахе [немецких городах, где они виделись в сентябре 1882 года] по воле всемогущего Бога меня озарили самые удивительные, самые неожиданные идеи о теории ансамблей и теории чисел [он имеет в виду, как мы увидим в главе 4, бесконечные числа]. Скажу больше, я нашел то, что бродило во мне в течение долгих лет».
Как же Кантор пришел к этим «удивительным открытиям»? Что послужило началом «брожения»? Чтобы понять это, мы шаг за шагом проследим путь его идей. Начнем, как и полагается, сначала.
Георг Фердинанд Людвиг Филипп Кантор родился 3 марта 1845 года в Санкт-Петербурге. Его отец, Георг Вальдемар Кантор, успешный торговец, датчанин по происхождению, был очень религиозен и ценил культуру и искусства. Мать, Мария Анна Бойм, дочь русских скрипачей, сама виртуозно играла на скрипке. Георг унаследовал ее музыкальный талант и годы спустя, то ли в шутку, то ли всерьез, сокрушался, что отец не позволил ему стать профессиональным скрипачом.
Музыка и искусство всегда были важны для Кантора. Он считал, что математика и искусство не так уж далеки друг друга и что математик должен обладать и творческой жилкой (это мнение разделяли многие его современники, а также автор этих строк). Так, в 1833 году он написал статью, в которой упоминал об «удивительных открытиях» (позже он рассказал о них в письме Дедекинду); среди прочего в ней были такие слова: «Вся общность математики заключается в ее свободе» (курсив Кантора). В ней же он писал:
- Предыдущая
- 2/30
- Следующая